North Sea – an area for blue and/or green hydrogen

Centre for Sustainable Subsurface Resources CSSR Centre director: Sarah Gasda, NORCE/UiB sgas@norceresearch.no

Norway's climate ambitions

Source: Norwegian Environment Agency

NPD Fact pages: NCS historic production

- Norway exports natural gas to the EU primarily for home heating and cooking
- Norway is expected to export nearly 90 billion cubic metres (bcm) of gas to the European Union, nearly 25% of its expected gas needs this year, according to forecasts from energy consultancy Rystad. Exports to Britain could reach 36 bcm, nearly 50% of the country's total gas demand. – *Reuters, Sep 8 2022*
- Norway's gas exports amount to ~200 Mt/y of CO₂ emissions by end users

Hydrogen and the Green Transition

- Norway wants to enable Hydrogen as central to the green transition
 - Decarbonize industry and transport (heavy vehicles, maritime industry)
 - Decarbonize natural gas exports to Europe
- Hydrogen is linked to climate change but also contributes to energy security, economic development, energy diversity/accessibility

Norway's Hydrogen ambitions/ goals

«...The Government will contribute in building a comprehensive valuechain for hydrogen where production, distribution and utilisation is developed in parallell...» (unofficial translation)

Hydrogen demand could increase 10-fold by 2050

Demand in million metric tonnes H2

600 Examples of 539 Power generation, demand specific 63 buffering 500 to Norway Transportation Domestic use 400 154 Industrial energy 300 Domestic use 112 196 **Building heat** 200 Export 77 and power 98 100 63 New feedstock 70 56 (CCU, DRI) 70 Existing feedstock uses 2015 2020 2030 2040 2050

Adapted from Scaling Up, Hydrogen Council, 2017. Orginal units in EJ converted to tonnes H2; 1 EJ = 7,000,000 tonnes H2.

*Hydrogen could provide up to 25% of EU energy demand, or ~2,250 TWh https://www.fch.europa.eu/sites/default/files/Hydrogen%20Roadmap%20Europe_Report.pdf

Domestic H₂ use vs export

- Stranded gas assets can be converted to blue ammonia + CCS and exported by ship
- Offshore H₂ production to power offshore facilities
- Offshore/onshore H₂ production for domestic use in the process or transport sector
- Direct export of blue H₂ to Europe is unclear..

Blue ammonia for export – Barents Blue

Offshore energy hubs of the future

- Energy hub integrates of wind, hydrogen, CCS, natural gas in a single offshore environment
- Growing popularity in countries with significant energy needs and existing offshore infrastructure, e.g. Netherlands
- Function is dependent on who is being served (cities, industry) and the balance between import and export, ie. techno-economics
- Is this a model for Norway?

North Sea Energy R&D program (north-sea-energy.eu)

Capture's Just Catch Offshore[™]: ready to cut emissions from Offshore clean power concepts in Norway oil and gas production UE, OCT 25, 2022 09:00 CET The Trollvind concept (ref.Equinor) Troll C STRØM Kollsnes Troll B Hjem Ho Troll A Blå strøm - Konsept Oseberg Field Centre 174 Oseberg South TC. 20

DNV qualifies Aker Carbon

AKER CARBON CAPTURE

Rainbow of H₂ production pathways

Power-to-gas can decouple renewable energy generation from energy demand

Power-to-gas requires short- to longterm storage solutions at docks, filling stations, industrial areas, cities.

Hydrogen has typically been produced close to end users due to:

- Safety
- Material issues / embrittlement
- Low energy density

Graphic source: International Renewable Energy Agency (IRENA)

Monthly gas supply balance in the European Union, 2014-2021

Last updated 26 Oct 2022

Download chart ↓

- Seasonal gas storage is 1572 TWh, which accounts for 25-30% of total gas consumption in Europe (GIE gas storage database (April 2021)
 - H_2 can be a substitute for natural gas
- Blue H₂ will need to also account for permanent storage of CO₂

Underground Hydrogen Storage (UHS)

- Nearly all of Norway's gas exports are used for home heating and cooking
- Seasonal storage is an essential component of the natural gas consumption in N. Europe
- EU gas storage volume amounted to 990.16 TWh in October 2022, accounting for approximately 89.02 percent of its capacity (www.statista.com)
- Energy density of H₂ is 25% of CH₄ need new gas storage facilities
- A future H₂ distribution network and subsequent need for UHS is less likely if home heating is electrified.

maps from ESTMAP (after GIE gas storage database and DOE energy storage database)

Underground storage applications

Krevor et al. Subsurface carbon dioxide and hydrogen storage in a sustainable energy future, Nature Review: Earth & Environment (NREE) in press.

Need for R&D for entire H₂ value chain.

S HyValue

Norwegian Centre for Hydrogen Value Chain Research

Research for safe and sustainable development of value chains for hydrogen and hydrogen-based fuels in industry and society.

Norwegian Centre for Hydrogen Value Chain Research

😓 HyValue

HyValue structure

Statusseminar for energiforskningen, Oslo, 24. november 2022

Centre for Sustainable Subsurface Resources

Research for optimal reservoir operations and value generation in the green transition

Energy-efficient petroleum production

ĪĪ

Strategies to synchronize water injection with intermittent energy

Energy storage in the subsurface

Scalable solutions for subsurface storage of hydrogen, air, and thermal

CCS: Carbon storage

Streamlined methods to integrate CO₂ storage with electrification

Digital workflows for subsurface management

Update workflows to increase predictive capacity and harness the value of subsurface data

Interdisciplinary research and education

Reservoir physics, geosciences and applied mathematics

CSSR is a Petrocentre financed by NFR (nr: 331841) NORCE lead, UiB partner, 170 MNOK budget, start-up 2022. Supported by major operators and technology providers

Sumitomo Corporation wintershall dea

Schlumberger

EARTH SCIENCE

Oregon State University London

Universität Stuttgart

TRO innovation for life

Summary

- Norway's strategy for the hydrogen economy is ambitious
- Emerging offshore energy hub concepts can facilitate domestic H₂ production for offshore industry
- Should we be optimistic for a future EU market for hydrogen? Uncertain who will be the first movers.
- How will public investment and industry collaboration play out?
- Decarbonization of gas exports is attractive, but is it better to produce blue H₂ close to source or users?
- Role of subsurface for large-scale H₂ energy storage is far from certain even if technical challenges are solvable.
- Many technical challenges to overcome along entire value chain.

Tusen takk!

 \bowtie

sarah.gasda@norceresearch.no

⊕ cssr.no

Centre for Sustainable Subsurface Resources

CSSR is a collaboration between NORCE and the University of Bergen and receives funding from the Research Council of Norway (nr: 331841) and industry stakeholders.

Novel production methods

Feasibility study

WP1 Methane Cracking

Explore safety control structures

and regulatory frameworks

Q

Prevention and safe design

CH

Green hydrogen via photocatalysis

WP4

Strength of knowledge

comprehension

Scenarios and phenomena

Storage and distribution

Efficient transport and distribution system

Regulation and standardization of H2 infrastructure

Reduce carbon footprint

End user applications

Se HyValue

Next minutes wave prediction

Maritime application of hydrogen

and hydrogen-carriers

The use of hydrogen in CCU at industrial sites

Cost-efficient hydrogen driven maritime operations

Integrating hydrogen in value chains

Key European market conditions, politics and policies

value chains

hydrogen and other maritime users.

Assessment of how hydrogen is coupled to and embedded in sociotechnical systems

Large-scale subsurface

storage solutions

Exploration of public literacy and legitimacy with regards to hydrogen and related technologies

Se HyValue

User cases

Kjerlingland O Windmills

Kjerlingland

Gold

The path towards a European hydrogen eco-system step by step :

X

Drivers and Indicators of Hydrogen's Momentum			
Drivers of renewed interest in hydrogen		Indicators of hydrogen's growing momentum	
$\langle \varphi_{\!$	~~		Carlos Carlos
Stronger push to limit carbon emissions	Falling costs of renewables and hydrogen technologies	Strategic push in national roadmaps	Industry alliances and momentum growing
8	80%	70%	60
Years remaining in the global carbon budget to achieve 1.5° C goal	Decrease in global average renewable energy prices since 2010	Share of global GDP linked to hydrogen country roadmaps to date	Members of the hydrogen council in 2021 up from 13 in 2017
66	55x	10 m	30 +
Years remaining in the global carbon budget to achieve 1.5° C goal	Growth in electrolysis capacity by 2025 vs. 2015	2030 target deployment of FCEVs announced at the Energy Ministerial in Japan	Major investments announced globally since 2017 , in new segments e.g. heavy duty & rail

Hydrogen is strongly linked with climate change but also contributes to

- o energy security
- o improved air pollution
- o economic development
- o energy accessibility
- o energy and economic diversity

Hydrogen production costs

Production cost of hydrogen – Global comparison

For projects using low-cost renewables like solar PV based electrolysis in the Middle east , the cost of renewables based hydrogen production could decline to USD 1.5 /kg in 2030

- Cost projections pre-Russian war on Ukraine.
- Costs are too high, strongly tied to energy prices

