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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was
conducted at the Institute of Theoretical Astrophysics (ITA), at the University
of Oslo, under the supervision of associate professor Sijing Shen and professor
David F. Mota.

The aim of this thesis was to develop a numerical scheme for galaxy simu-
lations that can properly model magnetic fields, which remain one of the most
often neglected parts. This likely stems from the complexity and technical
difficulties associated with them. The numerical framework of smoothed-particle
hydrodynamics(SPH) is particularly ideal in simulations of galaxy formation due
to its inherent conservative and adaptive properties. This thesis is a collection
of three papers, that go through the development of the SPMHD method and
its application to the magnetized core-collapse, magneto-rotational instability
and galaxy formation. The introductory chapters will serve to provide both a
motive and a comprehensive background to the numerical method and physics
involved in the three papers.

In Chapter 1, I will provide the purpose and a general introduction to the areas
covering my work.

In Chapter 2, I will go through the details of the SPH method, presenting it in
a more generalized manner to understand the assumptions and advantages/dis-
advantages of the method and to more clearly introduce the possible avenues of
improvements that exist.

In Chapter 3, I will go through the details of the magneto-hydrodynamic
implementation within SPH. Discussing the challenges of numerical magneto-
hydrodynamics and the different ways that we can overcome these.

In Chapter 4, I will present an introduction to numerical simulations of
galaxies, which include the different kind of physics needed to model galaxies and
how these are implemented in modern numerical codes. The topic of magnetic
fields in galaxies are covered in detail in paper 3 in this thesis and thus omitted
from this introduction section.

In Chapter 5, I will summarise the main research results and discuss the
future work to be done in the field of numerical methods, dynamo theory and
galaxy formation.
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Chapter 1

Introduction

Figure 1.1: All-sky view of the magnetic field and total intensity of synchrotron
emission measured by the Planck satellite, displaying the structure and strength
of the magnetic field within the Milky Way. Here the colors from blue to orange
represent the total intensity. The orientation of the projected magnetic field is
indicated by the "drapery" feature shown in the figure. This figure is from the
(Planck Collaboration et al., 2016).

Magnetic fields are a ubiquitous part of our universe and play an important
role in a wide array of different astrophysical systems. They govern the many
interesting phenomena of our Sun and determine the dynamic behavior of its
birth and death in the star formation process. Magnetic fields are also critical
in the launching of astrophysical jets, the transport of angular momentum in
disks, and the merging process of compact stars, to just name a few. In recent
years magnetic fields have also become a big subject of interest in regard to
galaxy formation. Observation has shown that many galaxies exhibit strong
magnetic fields, with strengths from around several μG for the Milky Way and
nearby galaxies (Opher et al., 2009; Fletcher, 2010; Burlaga et al., 2013; Beck,
2015) up to several mG in starburst galaxies (Chyży and Beck, 2004; Heesen
et al., 2011; Adebahr et al., 2013; Robishaw et al., 2008). The magnetic energy
in these galaxies are found to be close to equipartition with the thermal and
turbulent energies (Boulares and Cox, 1990; Beck et al., 1996; Taylor et al.,
2009), meaning that they are strong enough to dynamically affect the galaxy.
Furthermore, it has been observed that the morphology of the magnetic field
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1. Introduction

within disk galaxies exhibits a large-scale spiral structure (Beck and Wielebinski,
2013). In disk galaxies with a strong density wave structure, the magnetic
field tightly coincides with the optical spiral arms, as in M51 and M83 with
a strength of around 20 − 30μG (Fletcher et al., 2011; Frick et al., 2016).For
galaxies with weaker density structure, the magnetic field can instead form
large-scale magnetic arms not coinciding with the optical spiral arms, like in
NGC6946 (Beck, 2007).

The strong magnetic fields observed can contribute a significant non-thermal
pressure component to the galaxy, which can suppress star-formation rates and
heavily affect the structure of the interstellar medium (Pakmor and Springel,
2013; Birnboim et al., 2015). Within the ISM the magnetic field also plays
an important role in the dynamics of molecular clouds, where strong fields
can lead to more massive but fewer cloud cores (Vázquez-Semadeni et al.,
2005; Price and Bate, 2008). Another interesting aspect of magnetic fields
within galaxies is that they can suppress the development of fluid instabili-
ties (Jun et al., 1995; McCourt et al., 2015). This can allow for cold gas to
survive longer within the predominately hot galactic outflows, which could
provide a possible explanation for the observational significant component of
cold molecular gas seen in galactic outflows (Chen et al., 2010; Cicone et al.,
2014; Leroy et al., 2015; Martini et al., 2018). The strength and structure of
magnetic fields in galaxies also determine the transport of cosmic rays (CRs),
which together with magnetic fields can efficiently drive galactic outflows (Uh-
lig et al., 2012; Booth et al., 2013; Pakmor et al., 2016a; Butsky and Quinn, 2018).

Due to astronomy being an observational science, an important approach
to testing astrophysical theories is through the use of numerical simulations.
This gives us a ’virtual’ lab to understand how the system will react to a
range set of conditions and assumptions. It also allows us to predict the future
evolution of physical systems. Due to the limitation of computation, we cannot
model the motion of individual atoms. Instead, we require approximations and
discretization of the physical system to be able to model the system within the
limitations of computation. Within the macroscopic theory of fluids, a fluid can
be described as a continuum medium with macroscopic properties that vary
with position. Then whether you want to simulate gas, liquids, solids, dark
matter, or et cetera, a system of equations is required that describes how these
macroscopic properties will change in time. For an adiabatic inviscid fluid, the
hydrodynamic system can simply be described by the famous Euler equations.
This system of equations will involve both spatial and temporal derivatives that
need to be solved, to do this we need to discretize the system in question. Maybe
the most natural way to spatially discretize the fluid is by simply dividing up
the system volume into a regular spatial grid, where each grid cell (resolution
element) contains a volume average value of the macroscopic property. Then the
derivatives can be computed using developed finite difference/volume schemes.
However, in astrophysical fluids, we are often working on density scales that
vary over many orders of magnitude and require us to resolve physical processes
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over a wide range of spatial scales. This makes adaptivity of the resolution
a crucial component for any numerical scheme trying to model galaxies. The
adaptive mesh refinement (AMR) can be seen as an extension of the regular
spatial grid method, which adds additional levels of refinement to the grid where
it is desired (Berger and Oliger, 1984; Klein, 1999; Teyssier, 2002). Another
option to the fixed/Eulerian grid method is to instead use a Lagrangian grid
method, where the grid deforms according to the fluid flow (Pen, 1998; Springel,
2010). We can also instead of discretizing the fluid with respect to volume,
discretize the fluid with respect to mass. This results in a method where the
fluid properties are carried by a set of moving interpolation points (referred to
as particles) that follow the underlying fluid motion. Derivatives are given by
interpolation schemes over the neighbouring particles (particle method) (Gingold
and Monaghan, 1977; Lucy, 1977) or via interpolation from an overlaid grid
(particle-in-cell method) (Dawson, 1983).
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Chapter 2

Smoothed particle hydrodynamics

Figure 2.1: A visual representation of how a continuous fluid is modeled with
smoothed particle hydrodynamics, where the fluid is completely described by a
finite amount of interpolation points/particles. The figure shows the development
of the Kelvin-Helmholtz instability.

Any numerical method brings forth both advantages and disadvantages
depending on the system that you want to study. It is crucial that this is
taken into account when one is evaluating the quality of numerical methods.
Smoothed-particle hydrodynamics (SPH) is perhaps one of the most simple and
elegant numerical methods that one can derive. Given solely a density estimate
for an arbitrary distribution of mass particles representing the fluid, the equations
of hydrodynamics can be constructed from the least-action principle (Price and
Monaghan, 2004b). The Lagrangian properties present in the derivation ensure
that the equations of motion obey the symmetries and conservation properties
of the system (energy, momentum, and entropy). The Lagrangian nature means
that the method is fully Galilean invariant. The mass particles represent the
resolution elements of the method, this makes the resolution adaptive by nature
and concentrates the resolution in high-density regions while spending less
computational effort in empty regions of the simulation. No global boundary
needs to be set up in systems involving free boundaries and SPH couple naturally
to gravitational N-body codes. All of these strengths make the method ideal
for many astrophysical systems. However, as with any numerical method, there
are also weaknesses. In some systems, the resolution adaptivity with density
is undesirable if the point of interest occurs in the lower density regions of
the system, for example in the low-density mass transfer of two close binaries
(Church et al., 2009). There are also some challenges in handling discontinuities
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2. Smoothed particle hydrodynamics

in SPH, which is something that every numerical scheme needs to consider. In
finite-volume grid schemes, we have discontinuities in fluid variables between
neighboring cells, which are handled by limiting the flux across the boundaries.
In SPH there is an assumption that fluid variables vary smoothly along with any
pair of particles, meaning that the variables are assumed to be differentiable.
This means that there is a loss of information whenever the fluid properties
become discontinuous, reducing the accuracy of the method. To remain accurate
fluid properties need to be smoothed out on the scale of the resolution length
to adhere to this condition. This is done most often through dissipation terms
in SPH. The key issue in using dissipation terms to handle discontinuities is
that it can be hard to avoid excessive dissipation of gradients that are not
purely discontinuous. Due to the lack of consistent surfaces, SPH is limited
in its application of many flux-conserving methods developed for grid codes
(Evans and Hawley, 1988; Gardiner and Stone, 2005). Finally, the accuracy
of the SPH method is highly tied to how the particles are distributed within
the interpolation region of each particle. If the distribution is very asymmetric
the accuracy of the method will be reduced. Many of these disadvantages have
been tackled in recent years leading to more and more robust methods for SPH
(Wadsley et al., 2017; Price et al., 2018).

One of the main topics of this thesis regards the development of a new SPMHD
method that tries to improve on the traditional SPH method. It thus becomes
interesting to explore what the consequences are when we modify the traditional
SPH method. In this chapter, I will attempt to introduce the equations of
SPH in a more generalized matter. This is to highlight the assumptions and
advantages/disadvantages of the method and to more clearly introduce the
possible avenues of improvements that exist. The chapter is outlined as follows:
In Section 2.1 we present the equations that lay the foundation of the SPH
method; Section 2.2 we discuss the function of the smoothing kernel in SPH;
Section 2.2 we derive the SPH equations from the Euler equations and show the
conservative properties of the method; Section 2.4 we discuss thermodynamic
consistency in SPH; Section 2.5 second-order gradients in SPH; Section 2.6
derivation of the generalized SPH equation from the variational principal; Section
2.7 we present the shock/discontinuity capture methods used in SPH; Section
2.8 we present the timestepping algorithm used in the Gasoline2 code used
for all our simulations; And finally Section 2.9 we discuss the differences and
similarities to the moving mesh and SPH-ALE methods.

2.1 Foundation of SPH

Within the macroscopic theory of fluids we can describe a fluid as a continuous
field with variable values at set coordinates.

A(r) =
∫

V

A(r′)δ(r − r′)dV ′. (2.1)

6



Foundation of SPH

We want to discretize our continuous fluid into a finite number of interpolation
points. In SPH we discretize the fluid into mass elements called particles, with a
given volume/weight (dV = Vb). In addition, we want to be able to interpolate
the field values in between these particles, giving information about the field at
all points. In order to do so we can approximate the delta function in the above
integral with an interpolation/smoothing kernel with the following properties:

lim
h→0

W (r, h) = δ(r), (2.2)

∫
V

W (r, h)dr = 1. (2.3)

Here h is the smoothing length, which describes the characteristic length of the
interpolation. These are the essential properties required by the smoothing kernel
for approximating the delta function in Eq.2.1. However, when interpolating
physical fields (such as density) three additional properties are desirable. The
first is that the smoothing kernel is differentiable and the other two are positivity
and symmetry:

W (r, h) ≥ 0, (2.4)

W (r, h) = W (−r, h). (2.5)

We can then approximate the integral (Eq.2.1) and expand A(r’) about r to give
us (Benz, 1990; Monaghan, 1992):

A(r) =
∫

V

A(r′)W (r − r′, h)dV ′ = A(r)
∫

V

W (r − r′, h)dV ′.

+ ∇α∇βA(r)
∫

V

δrαδrβW (r − r′, h)dV ′ + O(h4). (2.6)

The odd error terms vanish due to the symmetry of the kernel. The second-order
error of the interpolant could potentially be removed as well by reconstructing
the kernel (Monaghan, 1985). However, these kernels do not ensure the positivity
constraint (Eq.2.4) and could lead to negative densities. These errors are often
of less concern compared to the errors that arise from the discretization as we
will see. Discretizing the above equation (dV = Vb) gives:

A(r) ≈
∑

b

VbA(rb)W (r − rb, h). (2.7)

This interpolant forms the foundation of all SPH formalisms. The errors of the
discretized interpolant can be shown by expanding Ab in the above equation in
a Taylor series around r:

Aa ≈
∑

b

VbAbWab = Aa

∑
b

VbWab + ∇αAa ·
∑

b

Vb(rb − ra)αWab

+
1
2

∇2
βγAa ·

∑
b

Vb(rb − ra)β(rb − ra)γWab + O(h3). (2.8)
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2. Smoothed particle hydrodynamics

As we can see from the errors, the accuracy of the interpolate will depend
heavily on the given particle distribution, the chosen volume element, and
the smoothing kernel. The leading order error E0 =

∑
b VbWab ≈ 1 describes

the accuracy of the volume partitioning, or in other words how well the nor-
malization of the discrete sum captures the normalization of the continuous
integral (

∫
V

WdV ′ = 1). A potential fix to this error is to simply normalize the
smoothing kernel (Wab,new = Wab∑

b
VbWab

), however, there are potential downsides
to using this sort of normalization when it comes to the hydrodynamic equations
which we will discuss further in Section 2.3.

A simple gradient estimate in SPH can be found by taking the spatial derivative
of our expression Eq.2.7:

∇A(r) =
∫

V

∇A(r′)W (r − r′, h)dV ′. (2.9)

If we assume that the kernel is differentiable we can rewrite this equation using
integration by parts:

∇A(r) =
∫

V

∇A(r′)W (r − r′, h)dV ′

=
∫

V

∇ [A(r′)W (r − r′, h)] dV ′ −
∫

V

A(r′)∇W (r − r′, h)dV ′

=
∫

S

[A(r′)W (r − r′, h)] · dS′ +
∫

V

A(r′)∇W (r − r′, h)dV ′. (2.10)

The surface term that appears in the above term will in general vanish where
the field A is differentiable. Assuming that A is differentiable we can write the
gradient as:

∇A(r) ≈
∑

b

VbA(rb)∇W (r − rb, h). (2.11)

The errors for the discretized gradient estimate will then be:

∇aAa ≈
∑

b

VbAb∇aWab = Aa

∑
b

Vb∇aWab + ∇αAa ·
∑

b

Vb(rb − ra)α∇aWab

+
1
2

∇2
βγAa ·

∑
b

Vb(rb − ra)β(rb − ra)γ∇aWab + O(h3). (2.12)

We can see that we have similar errors as for the regular interpolant function.
We will talk more about how we can construct new gradient operators for our
equations in Section 2.3.

From this point on differences between SPH methods will usually arise de-
pending on the desired qualities. We will begin by looking at the choice of the
smoothing kernel and smoothing length.
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Smoothing Kernel

2.2 Smoothing Kernel

Figure 2.2: Illustration of the C4 Wendland kernel in 2D. The 3D projection
shows how the smoothing kernel weight declines with radius. H represents the
compact support length of the kernel and is usually taken to be some multiple
of the smoothing length (H = nh). rij is the distance between the particle in
the centre (i) and its neighbor (j).

As we saw in the above section the smoothing kernel is one of the key factors
determining the accuracy of the SPH method. Apart from the conditions stated
in the previous section, the smoothing kernel is often assumed to be a spherically
symmetric function:

W (x, h) = W (y, h) = W (z, h) (2.13)

While spherical symmetry is not a requirement it is often desirable as asymmetric
kernel functions are prone to suffer inconsistencies and angular momentum issues.
We can write a symmetric kernel in the form of:

W (r, h) =
σ

hv
f(q) (2.14)

Here σ is the normalization factor following Eq.2.3 and v is the spatial dimension
and q = r/h. The Gaussian fits this description along with the other conditions.
However, as the interpolation spans the entire volume, it is an unpractical kernel
function for numerical simulations (cost goes as O(N2)). As contributions from
neighboring particles fall off quickly on the scale of the smoothing length, it is
suitable to introduce truncated kernels, which go to zero at a finite radius (the
compact radius H).

W (r, h) = 0 |r| > H = nh (2.15)

This H is often taken to be some multiple of the smoothing length h. This
reduces the cost of our SPH calculation O(NneighN), where Nneigh is the number
of neighbors within the compact radius. The standard truncated kernels used for
SPH have for a very long time been within the B-spline family (Schoenberg, 1946),
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2. Smoothed particle hydrodynamics

with the cubic kernel often being represented as the standard SPH kernel (since
Monaghan and Lattanzio (1985)). The kernel bias/errors at a given neighbor
number are strongly linked to the Fourier transform of the kernel. Because
the Fourier transform of B-spline kernels falls rapidly with wave number they
quickly become suitable for interpolation at low neighbor numbers. At higher
wavenumbers, the Fourier transform of the B-spline kernel oscillates around zero
with an amplitude that becomes smaller and smaller. Negative modes within
the Fourier transform have however been shown to be quite problematic when
increasing the number of neighbors above a certain critical value (Dehnen and
Aly, 2012). Above this critical value, the so-called pairing instability can occur,
in which particles start to merge, consequentially degrading the resolution of
the simulation (Thomas and Couchman, 1992; Morris, 1996; Børve et al., 2004;
Price, 2012; Dehnen and Aly, 2012). This will depend on the kernel, but for the
cubic kernel it lies in the region of Nneigh = 50. Depending on the wavenumber
of these negative modes and the size of their region will determine the sensitivity
to the pairing instability. A family of kernel functions that ensure a positive
Fourier transform is the Wendland kernels (Wendland, 1995). The family of
Wendland kernel functions for 3D is defined as:

W (r) = Cφk+2,k(r) φl,k = Ik(1 − r)l
+ (2.16)

with (.)+ = max(0, .) and linear operator

I[f ](r) =
∫ ∞

r

sf(s)ds (2.17)

The resulting kernel turn out to have a polynomial representation within r = 0, 1
while going to zero outside of this region. The second order Wendland kernel
φ4,2 (known as the Wendland C4 kernel) can be written as:

Wab =
σ

h3

{
(1 − q)6(1 + 6(1 − q) + 35

3 (1 − q)2) for 0 < q < 2,

0 for q > 2
(2.18)

q = r/h

Its gradient then becomes:

∇Wab =
σ

h4 r̂
{

(1 − q)5(1 + 5(1 − q)) for 0 < q < 2,

0 for q > 2
(2.19)

Higher-order kernels have smoother derivatives, which in combination with
higher neighbor numbers act to decrease the sensitivity to particle disorder. The
trade-off of using a higher-order kernel is often that it becomes less accurate than
its lower-order counterpart at low neighbor numbers(Monaghan, 1992; Rosswog,
2015). The Wendland kernel produces a general over-bias in its estimation,
which become more prominent at low neighbor numbers, as the bias is due to

10



Hydrodynamic equations

self contribution (at Nneigh = 200 this is negligible). To improve the estimate
we correct for the self contribution(Dehnen and Aly, 2012)1:

Wab = Wab − εW (0, ha) (2.20)

ε = 0.01342(
Nneigh

100
)1.579

Which gives a very nice estimate over a wide range of Nneigh values. This is the
default smoothing kernel of the Gasoline2 code (Wadsley et al., 2017) and the
one we have used in all papers included within this thesis.

Another interesting family of kernels is the sinc kernels (Cabezón et al.,
2008). These are susceptible to the pairing instability but can be avoided by
choosing a high enough kernel index for the chosen number of neighbors. What
makes these kernels interesting is the property of kernel separability, defined as:

W3(r, h) = W1(x, h)W1(y, h)W1(z, h)

Separability of the kernel guarantees consistency in a simulation involving planar
symmetry, giving identical results regardless of running the simulation in 3D,
2D, or 1D (given that the resolution is the same). This is a property that the
Gaussian kernel holds, but which is not withheld by truncated kernel functions.
The sinc kernel can however be shown to approach separability as n → ∞
(Cabezón et al., 2017). And is much closer to fulfilling this property than other
kernel families such as the Wendland kernels, where increasing the order does
not help in improving this property. The consequences of this property are
something that has not been readily researched by the SPH community and is
something that would be worth exploring more about in the future 2.

2.3 Hydrodynamic equations

The Euler equations represent the conservation laws for mass, momentum and
energy for hydrodynamics and forms a system of partial hyperbolic differential
equations. In compact form this is often written as:

∂U
∂t

− ∇ · (F − vf ⊗ U) = 0 (2.21)

Here U represents the conserved variables U = [ρ, ρv, ρu + ρv2/2], F represent
the flux of these variables F = [ρv, ρv ⊗ v + P, (P + ρu + ρv2/2)v] in a frame of

1ε will depend on the kernel and Nneigh, we have taken the simple power-law given by
Dehnen and Aly (2012) for the Wendland C4 kernel

2This is a nice property to introduce asymmetry within the kernel to improve linear
errors. W3(r, h) = W1(x, hx)W1(y, hy)W1(z, hz) replacing the smoothing length with a
vector. Previous implementations of asymmetric kernels simply modify: q = r/h =√

x2/h2
x + y2/h2

y + z2/h2
z which can be seen as the semimajor axes of the smoothing ellipsoid

centered on position r (Shapiro et al., 1996).
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2. Smoothed particle hydrodynamics

reference moving with the velocity vf . The integral of U over the volume gives
us the conserved quantities of mass, momentum, and energy. As SPH represents
a fully Lagrangian method, the velocity of the frame of reference is equal to
the fluid velocity (vf = v). This allows us to express the Euler equation in a
Lagrangian form, evolving the primitive variables(ρ, v, u):

dρ

dt
= −ρ∇ · v (2.22)

dv
dt

= −∇P

ρ
(2.23)

du

dt
= −P

ρ
∇ · v (2.24)

From here on out we need to construct a time-stepping algorithm to integrate
the equation in time (Section 2.8) and a way to discretize the spatial gradients
within SPH. We already saw a simple way to construct gradients for SPH in
Section 2.1:

dva

dt
= − 1

ρa

∑
b

VbPb∇W (ra − rb, h) (2.25)

However, it is simple to see that this sort of discretization can lead to non-
conservation in momentum. The force between a particle-pair should be
symmetric to conform to Newtons third law:

ma
dva

dt
+ mc

dvc

dt
= VaVc (Pc∇W (ra − rc, ha) − Pa∇W (ra − rc, hc)) = 0

(2.26)
Taking into account the errors of the gradient estimate in Eq.2.12 it is easy to
see that this condition is never ensured (even in the case of constant pressure!).
This can quickly lead to severe momentum errors when the particle distribution
becomes disordered. To ensure that this condition is fulfilled we require a
symmetric gradient estimate. Luckily, in numerical methods we do have a
certain degree of freedom when determining the gradients, as long as they
converge towards the same in the continuity limit. As a simple example we can
take the gradient estimate:

∇A = ∇A − A∇1 (2.27)

If we then apply the standard SPH gradient to this equation we obtain a new
gradient estimate:

∇A ≈
∑

b

mb

ρb
(Ab − Aa) ∇aWab, (2.28)

This new gradient estimate simply removes the zeroth order error from the
gradient estimate (see Eq.2.12). As we can imagine there are an infinite number
of ways to construct new gradient operators following this construction. However,
if we want our equations to follow the physical conservation laws certain rules must
apply. To ensure the conservation of momentum we require a symmetric gradient
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Hydrodynamic equations

operator for the momentum equation, the standard type can be constructed
following (Price et al., 2012):

∇A

ρ
=

φ

ρ

[
A

φ2 ∇φ + ∇
(

A

φ

)]
≈

∑
b

mb

ρaρb

(
Aa

φb

φa
+ Ab

φa

φb

)
∇aWab, (2.29)

Here φ can be any arbitrary, differentiable scalar quantity. This equation is,
however, not yet fully symmetric in the case of variable smoothing lengths for
individual particles. To fully symmetrize the equation, there are several options
available to us. Two straightforward ways to resolve this is to either use an
average smoothing length between the two interacting particle hab = (ha + hb)/2
or use an averaged kernel (Wab = (Wa + Wb)/2). Another option is to use ha for
the first gradient term (Aa

φb

φa
∇aWab(ha)) and hb for the second gradient term

(Ab
φa

φb
∇aWab(hb)) in Eq.2.29. This final way is how the SPH equations arise

naturally from the Euler-Lagrange equations, which we will touch on briefly in
Section 2.6. But in Gasoline2 we use the symmetric kernel gradient estimate:

∇A

ρ
=

∑
b

mb

ρaρb

(
Aa

φb

φa
+ Ab

φa

φb

)
∇aWab, (2.30)

Applying this to Eq.2.26 we can easily see that this fulfills the condition. As the
force is symmetric and always along the particle-pair the angular momentum
can be shown to be conserved aswell(Price, 2004):

d

dt

∑
a

ra × mava =
∑

a

ma

(
ra × dva

dt

)

=
∑

a

∑
b

mamb

ρaρb

(
Pa

φb

φa
+ Pb

φa

φb

)
ra × (ra − rb)Fab

= −
∑

a

∑
b

mamb

ρaρb

(
Pa

φb

φa
+ Pb

φa

φb

)
ra × rbFab = 0 (2.31)

Here Fabr̂ab = ∇Wab. The final expression here becomes zero because the double
summation is antisymmetric in a and b.

To ensure the conservation of energy the gradient operator chosen for the
momentum equation must form a conjugate pair with the operator chosen for the
energy equation (Cummins and Rudman, 1999). The conjugate operator(anti-
symmetric operator) of this is given by(Price et al., 2012):

∇A

ρ
=

1
φρ

[∇(φA) − A∇φ] ≈
∑

b

mb

ρaρb

φb

φa
(Ab − Aa) ∇aWab, (2.32)

Applying these operators to the Euler equations and we get:

dρ

dt
= ρa

∑
b

mb

ρb

φb

φa
(vb − va) · ∇aWab, (2.33)
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2. Smoothed particle hydrodynamics

dv

dt
=

∑
b

mb

ρaρb

(
Pa

φb

φa
+ Pb

φa

φb

)
∇aWab, (2.34)

du

dt
=

Pa

ρa

∑
b

mb

ρb

φb

φa
(vb − va) · ∇aWab, (2.35)

giving us a numerical scheme for hydrodynamics that spatially conserves
both momentum and energy exactly, leaving the error in conservation mainly
dependent on the time integration scheme.

2.4 Thermodynamic consistency

Two additional important conservation properties for our hydrodynamic scheme
still remain. The first relates to thermodynamic consistency or in other words
entropy conservation:

Ta
dSa

dt
=

dua

dt
− Pa

ρ2
a

dρa

dt
= 0. (2.36)

Looking at the derived Euler equations in the previous section, we can see that
we fulfill this property. The final property that we want to conserve is the
mass/effective volume within our numerical scheme. This is determined by the
accuracy of the continuity equation, which in our case (Eq.2.33) has both spatial
and temporal errors affecting its evolution. In SPH there is, however, another
way to get the density that exactly conserves the mass/effective volume. This
can be done through the core SPH interpolant that we introduced in Eq.2.7
using f = ρ. Here, we will derive a more general form of the density estimate
and take a look at the advantages and disadvantages comparing to Eq.2.33. We
start by setting the volume element accordingly:3:

Vb =
mb

ρb
. (2.37)

Instead of setting f = ρ in the SPH interpolate (Eq.2.7) we instead use f = ρ
η ,

where η is any arbitrary scalar function (as φ from previous section). We then
get the following density estimate:

ρa =
∑

b

Vbρb
ηa

ηb
Wab =

N∑
b

mb
ηa

ηb
Wab. (2.38)

This represents a more generalized form of the traditional density estimate
(η = 1) and represents an integral form of the continuity equation. As we are no

3It is important to note that this can simply be seen as defining a new density
ρb,new = ρb,old

ηb
ηa

so that we still have Vb = mb/ρb,new in the Euler equations that we
derived before and will remain unchanged as there are no direct derivatives taken on Vb. But
when looking at the density estimate and its time derivative it does provide a nice illustration
to write it like this.
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Thermodynamic consistency

longer evolving dρa

dt in time it is useful to take a look at the time derivative of
the density estimate to see how well the condition of thermodynamic consistency
is withheld (Eq.2.36):

dρa

dt
=

1
Ωa

N∑
b

mb
ηa

ηb
vab · Wab +

εa

Ωa
, (2.39)

εa =
N∑
b

mb

(
η̇a

ηa
− η̇b

ηb

)
ηa

ηb
Wab, (2.40)

Ωa = 1 − ∂ha

∂ρa

∑
b

mb
ηa

ηb

∂Wab

∂ha
. (2.41)

Here Ωa is the so-called grad-h term, which takes into account the contribution
of varying the smoothing length(Monaghan, 2002; Springel and Hernquist, 2002).
The ε is an additional term that arises when using non-constant η values(Read
and Hayfield, 2012). Thermodynamic inconsistency can be written as an error
term (writing dua

dt in terms of Eq.2.24 and rearranging Eq.2.36):

ES =
Taρ2

a

Pa

dSa

dt
=

dρa

dt
+ ρa∇ · va. (2.42)

Which is just the difference between the two terms in the continuity equation.
Inserting the estimate from the time derivative of the density (Eq.2.39) and the
gradient estimate of the divergence (Eq.2.33) and we get:

ES =
1

Ωa

N∑
b

mb
ηa

ηb
vab · ∇aWab +

εa

Ωa
− ρa

∑
b

mb

ρb

φb

φa
vab · ∇aWab (2.43)

For the traditional SPH equations were we have η = 1 ε = 0, we can make this
error term equal to zero if φ = ρ and we add the grad-h term 1

Ωa
to the gradient

estimate (both the symmetric and anti-symmetric Eq.2.30 and Eq.2.32). This
forms a fully spatially conservative method with mass, energy, momentum and
entropy exactly conserved (up to time-step error). This is the same form derived
by the least-action principle and the Euler-Lagrange equations using the density
estimate with η = 1. A slight caveat here is that we have assumed that the fluid
variables are differentiable in the gradient estimate ∇ · v, in cases where the
fluid variables are discontinuous or at open boundaries we have an additional
error term related to the surface integral described in Eq.2.10. This is because,
compared to the gradient estimate, this surface term is implicitly included in
the density estimate.

While traditional SPH provides astounding conservative properties, there
are significant drawbacks to this method. The main issue lies in the artificial
surface tension that arises near strong density gradients. This artificial surface
tension force inhibits fluid mixing and suppresses hydrodynamic instabilities
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2. Smoothed particle hydrodynamics

(Agertz et al., 2007). This is mainly caused by the leading order errors of SPH
generated by the uneven particle distribution around strong density gradients
(Read and Hayfield, 2012) and discontinuities in the internal energy (Price,
2008). To see why traditional SPH has such issues here, we can take a look at
the zeroth-order errors of our symmetric gradient estimate:

E0 =
∑

b

mb

ρb

(
φa

φb
+

φb

φa

)
∇aW ab, (2.44)

For traditional SPH we have φ = ρ which means that the error will be explicitly
dependent on the density gradient together with the "unevenness" of the particle
distribution. A huge improvement to this error would be to instead use φ = 1
which would make the error explicitly independent of the density gradient.

This is what is done within the Gasoline2 code and was seen to provide
significant improvements in problems involving strong density gradients and
fluid instabilities (Wadsley et al., 2017). Another option to combat the pairing
instability is to add thermal conduction near strong density gradients to smooth
out the thermal energy and the particle distribution within the kernel (Price,
2008). This can be an effective method but can often lead to excessive diffusion
(especially with low resolution) and can lead to suppression of fluid instabilities
solely due to the diffusion. There is however a trade-off in using φ = 1 as we
no longer fulfill the condition of thermodynamic consistency together with the
regular density estimate η = 1. A potential improvement would be to instead
use η = ρ for the density estimate. Interestingly this leaves us with an implicit
equation for density instead

∑
b

mb

ρb
Wab = 1, which we can see is the partition

of unit condition that we discussed in Section 2.1. Using this for the density
estimate would likely lead to better accuracy, however, this would require either
an iteration scheme or a fully implicit method from matrix inversion4. These
solutions methods are both too costly to consider for practical reasons and might
not even lead to convergent solutions5. Another issue with using a different
density estimate than η = 1 is the emergence of the other error term ε in
Eq.2.40, which would require careful consideration to evaluate its impact. As
such, in Gasoline2 we keep the η = 1 density estimate. To improve the entropy
conservation a linear correction term can be derived(Wadsley et al., 2017). We
can derive this from Eq.2.43 by expanding vb about ra

ES =
1

Ωa

(
∇ · va

∑
b

mb
ηa

ηb
rab · ∇Wab + O(h2)

)

+
ρa

Ωa

(
∇ · va

∑
b

mb

ρb

φb

φa
rab · ∇Wab + O(h2)

)
(2.45)

4In addition this has the additional requirement of needing a positive solution as we cannot
allow of negative densities.

5Though for educational purposes it might be an interesting project to consider for future
work.
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Second-order gradients

A first order correction would then simply be:

fa =
∑

b
mb

ρa

ηa

ηb
rab · ∇Wab∑

b
mb

ρb

φb

φa
rab · ∇W ∗

ab

(2.46)

Here ∇W ∗
ab is the choice of kernel used for the gradient estimate(for example

regular ∇Wab or averaged ∇Wab). This correction term can be added in together
with the grad-h term Ωa. While second and higher-order errors still remain,
we have observed no systematic effect caused by this error. An important
constraint to consider for the correction term is how they couple to other
non-hydrodynamic forces such as gravity. The correction terms can be seen
to effectively alter the adiabatic index to improve the conservation of entropy
for the hydrodynamic equations, however, if the correction terms become small
enough these can cause rapid gravitational collapse when coupled with gravity
(due to the effective adiabatic index going below γ < 4/3 together with the
energy-conserving property of SPH). While this is highly unusual it can occur
given a bad particle distribution. As such, we limit the correction term to not
go below 5/6.

An interesting prospect for future study would be to use ηa = ρa,0 and
ηb = ρb,0, which would lead to a near-consistent thermodynamic relation to-
gether with φ = ρ/ρ,0, where ρ,0 =

∑
b mbWab represents the classic density

estimate with η = 1. This would in theory lead to better volume partitioning
while also leading to similar improvements in the gradient estimate near density
gradients. This would be similar to the method proposed by García-Senz et al.
(2021).

2.5 Second-order gradients

Due to the compact support of the kernel, second order spatial derivatives prove
to be very noisy and sensitive to particle disorder. A better estimate for the
second derivative can be gained by using the integral approximation:

∇2A = 2
∑

b

mb
Aa − Ab

ρb

rab · ∇aWab

r2
ab

(2.47)

This is the formalism that has been commonly used for isotropic heat conduction
in SPH (Brookshaw, 1985; Cleary and Monaghan, 1999; Jubelgas et al., 2004).
Equation 2.47 can also be generalized for vector quantities as shown by Español
and Revenga (2003). However, this method together with the direct second
derivative method has shown to be unstable when applied to anisotropic heat
conduction. This is because these methods do not ensure increasing entropy
during transport. A stable and more accurate approach for anisotropic heat
conduction was found by Biriukov and Price (2019). In this new method, the
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2. Smoothed particle hydrodynamics

second derivative is gained by applying two first derivatives with alternating
symmetric/anti-symmetric gradient operator. While there is an increased cost
to this method (two neighbor loops), it is subject to a less stringent timestep
criterion (3-8 times larger).

2.6 Variational principle

In the previous sections, we have derived the SPH equation from kernel
interpolation theory and the Euler equations. Another popular derivation is
often given in terms of the variational principle. Here the starting point is instead
the density estimate, which alone can derive the equations of motions and energy
within SPH. It is instructive to see how only determining the density leads to a
fully conservative method. For some additional "freshness" we will do so for the
more general form of the density estimate and show why deviating from η = 1
complicates the matter. Similar to assumptions done before, derivation using the
variational principle assumes that the Lagrangian is differentiable (the action
goes to zero at the surface of the integration volume) and does not account for
the discreetness in time. The equations of motion of a system can be derived
from the principle of least action by minimizing the action:

S =
∫

Ldt (2.48)

The discrete version of the Lagrangian is given by (Eckart, 1960; Salmon, 1988;
Morrison, 1998):

L =
∑

b

mb

(
1
2

v2
b − ub

)
(2.49)

Minimizing the action:

δS =
∫

δLdt = 0 (2.50)

δL = mava · δva −
∑

b

mb
δub

δρb
δρb (2.51)

The perturbation in both δv and δρ is with respect to a small change in the
particle coordinates δr. We can express the change in density with coordinates in
a form similar to the time derivative of the density estimate given in Eq.2.39-2.41.

δρb =
1

Ωb

∑
c

mc
ηb

ηc
∇bWbc(δrb − δrc) +

δεb

Ωb
(2.52)

δεb =
∑

c

mc
ηb

ηc
(δ log(ηb) − δ log(ηc)) Wbc (2.53)

The function that arises from δε quickly become difficult to properly solve. For
example, take η = ρ and we can see that we get an implicit function that needs
to be solved, as a small positional perturbation for a particle will effectively
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Shocks and fluid discontinuities

change the density of all particles. Thus, we neglect the ε term, providing a
Lagrangian solution where η is assumed to be independent of δr. We continue
the derivation by putting in the change of thermal energy at constant entropy
(∂ub/∂ρb = P

ρ2 ) and integrating by parts Eq.2.50, giving the equation of motion:

dva

dt
= −

∑
b

mb

(
Pa

ρ2
aΩa

ηa

ηb
∇Wab(ha) +

Pb

ρ2
bΩb

ηb

ηa
∇Wab(hb)

)
(2.54)

The internal energy equation is simply given by looking at the conservation of
energy similar as in Section 2.3.

2.7 Shocks and fluid discontinuities

As we have seen in the previous sections the Euler equations represent an
adiabatic reversible model of fluids, where entropy is tightly conserved. However,
in real fluids, there are irreversible processes that increase the entropy of the
fluid. The main one being shocks, where the fluid variables change. Shocks are
not actually discontinuous in nature, they vary smoothly over the mean free path
of the fluid, where particles collide and randomize their velocities, generating
heat and entropy. We are, however, working with a macroscopic theory, at a
much larger scale than the mean-free path. As we cannot resolve this process,
we need a sub-resolution model to capture the entropy generated by this process.

In SPH shocks have been predominately handled by applying artificial vis-
cosity(Von Neumann and Richtmyer, 1950; Richtmyer and Morton, 1967), which
smooths the discontinuous shock front on the scale of the smoothing length.
This is similar to what is done in nature but at an albeit much larger scale. The
most popular artificial viscosity formulations used for SPH was formulated by
Monaghan and Gingold (1983), which adds an extra term to the equations of
motion and the internal energy equation:

dva

dt diss
=

∑
b

mbΠab∇aWab, (2.55)

du

dt diss
=

∑
b

mb

(
Πab

2

)
vab · ∇aWab, (2.56)

Πab =
−α 1

2 (vsig,a + vsig,b) μab + βμ2
ab

1
2 (ρa + ρb)

(2.57)

μab =

{ 1
2 (ha+hb)(vab·rab)
r2

ab
+0.01(ha+hb)2 for vab · rab < 0,

0 otherwise,
(2.58)

The non-linear term comes from the Von-Neumann Richtmyer method and
the linear term was added to handle post-shock oscillations. First-order
accuracy at shocks is a necessary condition for eliminating post-shock oscillations

19



2. Smoothed particle hydrodynamics

and follows from Godunov’s theorem: [Linear numerical schemes for solving
partial differential equations that do not generate new extrema (i.e., preserve
monotonicity), can be at most first-order accurate. (Godunov and Bohachevsky,
1959)]. As the resolution is increased this viscosity acts on a smaller scale and
becomes more accurate. However, applying the linear viscosity term everywhere
can ruin the convergence of the method in smooth flows, far away from the shocks
and discontinuities where we actually need it. To handle this issue, artificial
switches have been developed that shut down the linear term away from shocks
and activate it near shocks. Modern switches are based on the work by Morris
and Monaghan (1997), where α is set individually per particle and is increased
in regions undergoing compression(∇ · v) while decaying otherwise.
Cullen and Dehnen (2010) improved on the Morris-Monaghan switch by
recognizing that the time derivative of the divergence(d(∇ · v)/dt) was better
suited for shock detection, as it could better distinguish between shocks and
converging flows. This is often combined with the Balsara limiter (Balsara, 1995),
which reduces dissipation in the presence of shearing flows:

ξbalsara =
|∇ · v|

|∇ · v| + |∇ × v| (2.59)

However, using the Balsara limiter has been found to lead to different shock
properties in rotating systems. To avoid this a trace-free shear tensor can be
used instead, as it is zero for pure rotation but still detects shear. An issue
with these switches is that they are based on the divergence of the velocity, this
means that even in uniform compression viscosity will be partly active. An
improvement to this was presented in the Gasoline2 code paper (Wadsley et al.,
2017), where the shock indicator was instead based on the velocity gradient in
the direction of the pressure gradient:

∇P = (γ − 1)
∑

b

mbub∇aW (rab, ha) (2.60)

n̂ = −
dv
dt

| dv
dt | =

∇P

|∇P | (2.61)

dv

dn
=

∑
α,β

= nαVαβnβ (2.62)

To avoid miss-activation during a uniform collapse, one-third of the divergence is
removed from the shock indicator, ensuring that the n̂ direction is the dominant
part of the local compression. This is the gradient-based shock detector:

D =
3
2

(
dv

dn
+ max(−1

3
∇ · v, 0)) (2.63)

This shock indicator provides a more accurate estimate than the ∇ · v indicator.
An even more accurate estimate can be made by actually using the same dv

dt
as in the equation of motion, but this would require an additional loop over
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the neighbors, increasing the cost of the method. The linear term α is updated
according to (same as the Cullen Dehnen method):

αloc,a = αmax
Aa

Aa + vsig,a
, where (2.64)

Aa = 2h2
aξamax(−dD

dt
, 0) (2.65)

The max is taken to be αmax = 2 and whenever αa is less than αloc,a it is set to
αa = αloc,a, otherwise it decays following:

dαa

dt
= (αloc,a − αa)/τa (2.66)

τa =
ha

0.2vsig,a
(2.67)

A similar limiter to the trace-free shear tensor is used for ξ:

ξa =
(

1 − Ra

2

)4
(2.68)

Ra =

∑
b mb

Db

|Tb| WR∑
b mbWR

(2.69)

Here Tαβ = 1
2 (Vαβ + Vβα) and the weighting WR is chosen to be:

WR = 1 − (
rab

2ha
)4 (2.70)

This gradient-based shock detection is very effective in reducing the viscosity
away from shocks and is easily modified for additional physics such as MHD.

The major disadvantage of the artificial viscosity is that it is hard to get
a good balance between less dissipation away from shocks and proper shock
capture. The artificial viscosity scheme presented above handles this balance
very well, but additional improvements can likely be made. In finite-volume
schemes, shock capturing is often done by either restricting the magnitude of
the numerical flux across the shock front (TVD schemes) or by limiting the flux
using the exact solution to the Riemann problem (Godunov schemes). Artificial
dissipation can in fact itself be seen as a solution to the inter-particle Riemann
problem (Monaghan, 1997), which correspond to a zeroth-order/constant velocity
reconstruction in finite-volume schemes. Recently Frontiere et al. (2017) and
Rosswog (2020) have presented artificial viscosity methods that take advantage
of higher-order velocity reconstruction and slope limiters, which shows impres-
sive results even with a fixed linear dissipation parameter(α). Godunov-type
schemes using exact Riemann solvers have also been implemented in SPH using
a conservative form of the equations (Inutsuka, 2002; Cha and Whitworth, 2003;
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Puri and Ramachandran, 2014).

As we have discussed in the previous sections(see Section 2.2), the SPH
gradients assume that the fluid variables are differentiable. This means that dis-
continuities within the flow introduce a loss of information within our equations
if left untreated (Price, 2008). For regular hydrodynamics, this includes velocity
and internal energy discontinuities, in which artificial viscosity handles the
velocity part and artificial conduction handles the internal energy part. Applying
diffusion terms to the internal energy can be a sensitive thing, as the natural
tendency of gradients in thermal energy is to spread out, which means that
any gradient diffused will remain diffused. Proper switches are therefore very
important for artificial conduction as well. In Gasoline2 the primary dissipation
for internal energy is through turbulent diffusion, which is based on the local
velocity shear (Wadsley et al., 2008; Shen et al., 2010):

dua

dt cond
=

∑
b

mb
(da + db)(ub − ua)(rab · ∇Wab)

1
2 (ρa + ρb)r2

ab

(2.71)

where da is the diffusion coefficient of particle a. This models the unre-
solved turbulent transport terms, which leading order term is the turbulent
diffusion(da = C|S|h2

a, C = 0.03). This type of modeling captures an underlying
physical phenomena and resolves the mixing issue in most situations, without
leading to excessive dissipation. However, there are situations especially in
shocks where additional dissipation is required for the thermal energy to produce
more accurate results. Here additional shock based thermal conduction can be
added (Monaghan and Lattanzio, 1985; Price, 2008). However, more aggressive
thermal conduction terms can easily lead to excessive dissipation in simulations
involving gravity.

2.8 Time-stepping

We integrate the SPH equation within this thesis using the Kick-Drift-Kick
method as described in Quinn et al. (1997); Wadsley et al. (2004). The Kick-
Drift-Kick integration scheme uses a fixed global timestep where all particle
quantities are synchronized. The scheme starts by updating the non-positional
particle quantities (velocity, energy, etc.) to the half step (Kick), which is
followed by a full step updating the particle positions (Drift) and then finally by
another half-step (Kick) for the other particle quantities to synchronize them
all. An arbitrary number of sub-steps with factors of two smaller can be used to
integrate gas with different timestep criteria. The basic form of the integrator is
given by (only gravity force calculation):

vn+ 1
2 = vn +

1
2

∇tan (2.72)

rn+1 = rn + ∇tvn+ 1
2 (2.73)
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an+1 = a(rn+1) (2.74)

vn+1 = vn+ 1
2 +

1
2

∇tan+1 (2.75)

Without gas, this method is identical to the well-known leap-frog method, which
possesses both a symplectic and time-reversible property. Symplectic integrators
provide much better energy conservation than non-symplectic integrators which
can produce significant long-term energy drift in dynamical systems. The reason
why symplectic integrators provide this benefit is due to the conservation of an
approximated Hamiltonian which represents a slightly perturbed version of the
original Hamiltionian (Engle et al., 2005). In addition to proving better energy
conservation, symplectic integrators also ensure that the phase space volume
together with linear and angular momentum is conserved. The time-reversibility
property simply means that particle quantities can be returned to their initial
value by reversing the direction of the time integration. The scheme deviates
from being strictly symplectic when particles change the number of sub-steps to
adhere to their individual timestep criteria.

The time-step criterions that we apply are:

dtaccel ≤ 0.3
√

a

ε
(2.76)

dtcourant ≤ 0.4
h

(1 + α)vsig + βμMAX
(2.77)

dtthermal ≤ 0.25
√

u

du/dt
if du/dt ≤ 0 (2.78)

where the smallest criterion gives the individual timestep for the particle.

As the time-step constraint is a "local" quantity of the particle, situations
can occur when there are large differences in individual time steps between
nearby particles. This has been shown to cause catastrophic non-conservation in
energy for simulations involving strong shocks. To avoid rapid spatial variations
in the individual time-step the scheme of Saitoh and Makino (2009) is applied,
where a particle time-step dta is limited to never exceed 4 times the timestep of
any of its neighbors dtb.

dta ≤ 4dtb (2.79)

2.9 Relation to moving mesh/SPH-ALE

In practice, there are a lot of similarities between SPH and other Lagrangian
methods often grouped as Adaptive-Lagrangian-Eulerian(ALE) methods. This
includes moving-mesh methods(Gressel, 2010; Pakmor et al., 2016b) and
SPH-ALE/Riemann-SPH methods(Vila, 1999; Inutsuka, 2002; Puri and Ra-
machandran, 2014; Avesani et al., 2014; Hopkins, 2015; Oger et al., 2016). The
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2. Smoothed particle hydrodynamics

two major difference between ALE methods and SPH lies in the partitioning
of the volume and the evolution of conserved quantities instead of primitive
variables. Here the conserved quantities are exchanged between particles through
fluxes over constructed surfaces. In the case of moving mesh, this occurs through
the constructed surfaces of the Voronoi mesh and in SPH-ALE through surfaces
computed from the kernel gradient or some particle weighted function. These
methods rely on Riemann solvers to calculate the fluxes between resolution
elements. These methods are quasi-Lagrangian, which degree highly depends on
the assumption of the interface velocity and reconstruction procedures. One way
is to assume that the interface move with the average velocity of the interface
sharing neighbors. This means that mass flux through the surfaces can occur
and that particle/cell velocities are not fixed to the local fluid velocity. Another
way is to assume that the interface moves with a velocity that effectively cancels
the mass-flux between particles/cells6.

A recent SPH-ALE method that has become popular in astrophysics is the
MFM/MFV method developed by Hopkins (2015), which is a reformulation of
the Lanson and Vila (2008) method to be used in astrophysics. Compared to
moving mesh, the particle volume in MFM is still calculated using the traditional
SPH density estimate, meaning that the particle volumes will overlap. The
difference from SPH mainly lies in the derivation of the equations of motion
from a conserved variable approach. This ensures a partition of unity due
to "volume" being taken into account during flux transfer between neighbors.
While MFM has proclaimed itself to be in many aspects an overall improvement
to the SPH method, it is not that simple, every numerical method will bring
advantages/disadvantages depending on the situation.

Riemann-solvers while attractive do not always bring the advantage that
is claimed, the convergence in the method will still be limited by the width of
the shock front, which for any scheme can only be resolved to within a kernel
width. The method is also affected by the performance of the slope-limiter
used to reconstruct the particle variables at the neighboring surfaces. This can
result in similar or even worse results compared to regular SPH in low-resolution
cases, but with the additional computational cost of the solver (Borrow et al.,
2022). MFM similar to moving mesh code requires an additional procedure to
handle irregular distributions/meshes (reconstruction, splitting, local method
alterations, etc.). It is also a relatively new method for astrophysics, where
numerical conservation, bias, and issues remain fairly unexplored for the method.
One example is in Deng et al. (2019), where the particle-pairing instability was
shown for MFM using the cubic-spline kernel at high neighbor numbers.

6The velocity of the contact discontinuity within the Riemann solution. This interface
velocity is, however, only fulfilled to second-order in the subsequent particle movement (Hopkins,
2015). Potentially leading to some suppression of mass-flux (in shocks for example).
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Chapter 3

Smoothed particle
magneto-hydrodynamics

Figure 3.1: Density rendering and magnetic field structure of the jet formed from
the magnetized cloud collapse. The first figure just shows the density rendering
and then from left to right we visualize the different layers of the magnetic
field structure going outward from the central core. The colors of the field lines
represent the relative strength of the toroidal component of the magnetic field
(blue to red). From this, we can see that the magnetic field structure of the jet
consists of a poloidal dominated central region with a surrounding toroidal field.

Magnetized plasma within the universe can be described by the equations
of magneto-hydrodynamics (MHD). In the ideal limit, the MHD equations is a
result of the coupling between the Euler equations and the Maxwell equations.
The equations of MHD might at first glance look relatively simple to solve.
However, there is a wide range of technical difficulties involved in properly
solving these equations. The first and most famous issue lies in the divergence
constraint or the no-monopole condition:

∇ · B = 0 (3.1)

Divergence errors are hard to avoid as they occur naturally due to the discretiza-
tion and numerical integration of the MHD equations. Numerical procedures
need to be constructed for the numerical scheme to remain consistent and stable
in the presence of these errors. This includes procedures that decrease the
errors or limit their growth within the simulation. A second technical part of
MHD is the additional complexity of shocks compared to their hydrodynamic
counterpart. This is due to the additional wave types that arise in MHD,
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3. Smoothed particle magneto-hydrodynamics

dependent on the direction of the magnetic field along the shock front. This
gives rise to different resulting shock structures that each need to be handled
correctly by the numerical scheme. Third MHD introduces tension forces, this
is particularly problematic for methods such as SPH. This is because in the
presence of tension the particles tend to clump together, causing a so-called
tensile instability (Phillips and Monaghan, 1985; Morris, 1996; Dyka et al., 1997;
Monaghan, 2000). This is not too hard to understand as the regularization of
SPH particles is tightly connected to the repulsive force between particles and
the "zeroth-order" error, as we touched upon in the previous chapter. A negative
force would remove this regularization force and simply merge particles. This
tensile instability for MHD is in the end caused by the presence of divergence
errors. There are, however, as we will see many ways to remove this instability
from the MHD equations. Fourth: when considering systems with magnetic fields
several additional conserved quantities are introduced (Morrison and Hazeltine,
1984), which needs to be considered by any numerical scheme. Fifth: There is
a large resolution disparity when it comes to simulations of magnetic fields in
galaxies, fluid parameters such as the magnetic Reynolds number are several
magnitudes higher in reality (Remag ≈ 1013) than in numerical simulations
(Remag ≈ 10 − 10000). Amplification of the magnetic field through dynamo pro-
cesses can be heavily dependent on these fluid parameters, which for numerical
schemes are determined by their dissipation and resolution. Divergence errors,
gradient operators, and conservation properties also play a role in correctly
capturing dynamo processes in numerical schemes.

Despite all these challenges, MHD has successfully been implemented in a
wide range of codes (Teyssier, 2002; Stone et al., 2008; Pakmor et al., 2011;
Price et al., 2018; Pencil Code Collaboration et al., 2021), which include both
Eulerian and Lagrangian codes. The first MHD implementation within SPH was
included in one of the first papers on the SPH method (Gingold and Monaghan,
1977), which considered magnetic polytropes. This method did however not
conserve either linear or angular momentum. This was improved upon by
Phillips and Monaghan (1985), which formulated the basic SPMHD equations
that modern SPMHD is based upon, these equations conserved both linear and
angular momentum and were applied to simulations of star formation. An issue
with this early implementation was the tensile instability, leading to particle
clumping. Another early SPH MHD implementation relied on a grid to update
the magnetic field, which was then interpolated onto the SPH particles (Habe
et al., 1991; Mac Low, 1999). There were also applications within SPH MHD
that made use of a non-conservative J × B force that ensured that the force was
always perpendicular to the magnetic field (Meglicki et al., 1995; Cerqueira and
de Gouveia Dal Pino, 2001), neglecting the force from any potential monopole
error, which, however, showed poor performance in simulations involving shocks.
The modern SPMHD method hails from the work by Price and Monaghan
(2004a,b, 2005), that developed a conservative SPMHD scheme for varying
smoothing lengths, that effectively prevents the tensile instability from occurring.
In addition, they included improved magnetic shock capturing methods and
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Continuum magnetohydrodynamics

divergence cleaning methods. The divergence-cleaning methods were further
improved upon in the work by Tricco and Price (2012); Tricco et al. (2016)
and improved artificial resistivity switches have been developed (Wurster et al.,
2017). This is the SPMHD scheme that the work of paper 1 was based on and
further developed upon.

The chapter is outlined as follows: In Section 3.1 we go through how the
continuum magnetohydrodynamics equations are derived and what assumptions
are made; Section 3.2 we derive the additional kinetic waves that are generated
in the fluid when subject to a magnetic field; Section 3.3 we show how the
ideal MHD equations are discretized in a general form; Section 3.4 we discuss
the tensile instability in MHD and how to treat it; Section 3.5 we present how
magnetic field discontinuities are treated; Section 3.6 we discuss past efforts to
handling the monopole error and present the method of divergence cleaning;
Section 3.7 goes through the additional conservation variables that exist in
MHD; Section 3.8 we present an introduction to dynamo and mean-field theory.

3.1 Continuum magnetohydrodynamics

The equations of magnetohydrodynamics is the resulting coupling of the Maxwell
equations to that of hydrodynamics. The Maxwell equations are given by:

∇ × E =
−∂B

∂t
(3.2)

∇ · E =
τ

ε0
(3.3)

∇ × B = μ0

(
J + ε0

∂E

∂t

)
(3.4)

∇ · B = 0 (3.5)

Here, B is the magnetic field, E is the electric field, τ is the charge density, J is
the current density, μ0 is the permeability of vacuum and ε0 is the permittivity of
vacuum. In the ideal limit the fluid is assumed to be highly ionized (electrically
neutral, ideal conductor), allowing us to neglect the effect of static electric charge
within the fluid. A formulation for the induction equation can be given by taking
a look at Ohm’s law.

J ′ = σE′ (3.6)

In a fixed frame of reference, the electric field is given by:

E′ = E + v × B (3.7)

Adding this to Ohms law we can see that we can express the electric field as:

E = −v × B +
J

σ
(3.8)
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3. Smoothed particle magneto-hydrodynamics

Taking the curl of the electric field, we can insert it into the Maxwell equations
to obtain the induction equation (infinite conductivity σ → ∞):

∂B

∂t
= ∇ × (v × B) (3.9)

Expanding this equation gives1:

dB

dt
= −(∇ · v)B + (B · ∇)v + (∇ · B)v (3.10)

Here (∇ · v)B evolves the magnetic field through shearing motion, while the
(B · ∇)v increases the magnetic field when undergoing compression. The final
term (∇ · B)v represents the monopole current, which is an unphysical term
caused by the numerical divergence error. The current form of the induction
equation is known as the conservative form, which exactly conserves the volume
integral of the magnetic field.

d

dt

∫
BdV = 0 (3.11)

However, this form will evolve the magnetic field due to the monopole currents
that can lead to a build-up of divergence-error and unphysical effects. A much
more important quantity to conserve than the volume integral is the surface
integral of the magnetic flux.

d

dt

∫
BdS = 0 (3.12)

By removing the monopole currents from the induction equation ((∇ · B)v), the
divergence errors are simply advected with the flow of the fluid, which ensures
that the surface integral is conserved (Janhunen, 2000; Dellar, 2001).

For the equation of motion we have Lorentz Law, given by:

ρ
∂v

∂t
= τE + J × B (3.13)

Using the assumptions from before, Lorentz Law can be written as:

ρ
∂v

∂t
=

1
μ0ρ

(∇ × B) × B =
1

2μ0ρ
∇B2 +

1
μ0ρ

(B · ∇) B (3.14)

Adding the induction equation and Lorentz law to our set of hydrodynamic
equations, we have the equations for SPMHD:

dv
dt

=
∇ · S

ρ
= −1

ρ
∇

(
P +

B2

2

)
+

1
ρ

[(B · ∇)B + B(∇ · B)] . (3.15)

1The advection term (v · ∇)B is included in the Lagrangian derivative
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dB
dt

= ∇ × (v × B) = (B · ∇)v − B(∇ · v), (3.16)

Here S represents the stress tensor and is defined as:

Sij = −δij

(
P +

B2

2

)
+ BiBj , (3.17)

3.2 MHD kinetic waves

As we mentioned in the introduction, the addition of magnetic fields adds
additional possible kinetic wave modes to the fluid. It is instructive to show
how these wave modes arise by applying simple perturbation theory to the ideal
MHD equations in the previous section. We assume that we have a uniform
density field with a constant magnetic field. We then add a small perturbation
(δρ, δv, δB) to the underlying field (ρ, v, B). Inserting this into the ideal MHD
equations and considering only linear terms then give:

∂δρ

∂t
= −ρ0∇ · δv (3.18)

∂δv

∂t
= −c2

s∇δρ

ρ0
+

1
μ0ρ0

(∇ × δB) × B0 (3.19)

∂δB

∂t
= ∇ × (δv × B0) (3.20)

The perturbations are assumed to have a wave-like solution(eik·r−iωt), which
gives:

ωδρ = ρ0k · δv (3.21)

ωδv = c2
s

(
k · δv

ω

)
k − (B0 · k)δB

μ0ρ0
+

(B0 · δB)k
μ0ρ0

(3.22)

Taking the time derivative of ωδv and using the above relations then gives:

[ω2−(vA ·k)2]δv = [(c2
s +v2

A)(k ·δv)−(vA ·δv)(k ·vA)]k−[(vA ·k)(k ·δv)]vA (3.23)

Here vA = B0√
μ0ρ0

is the Alfven speed. Assuming the magnetic field in the
z-direction and wave vector in the y-z plane gives three set of equations:⎛

⎝ω2 − v2
Ak2

z 0 0
0 ω2 − c2

sk2
y − v2

Ak2 −c2
skykz

0 −c2
skykz ω2 − c2

sk2
z

⎞
⎠ δv =

⎛
⎝0

0
0

⎞
⎠ (3.24)

We can see that we have a velocity component in the x-direction, which is
orthogonal to both the wave direction(ŷ, ẑ) and magnetic field direction(ẑ).
These are transverse waves caused by the magnetic tension that travels along
the magnetic field lines. They have a phase velocity of ω

kz
= vA and are known
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as Alfven waves. The longitudinal components in the y, z plane can be found
from the determinant and solving for ω2

k2 :

ω2

k2 =
1
2

(c2
s + v2

A) + −1
2

√
(c2

s + v2
A)2 − 4c2

sv2
A

k2
z

k2 (3.25)

The two modes in the solution of the above equation represent the fast(+)
magnetosonic waves, where pressure and magnetic fluctuations reinforce each
other, and slow(-) magnetosonic waves, where pressure and magnetic fluctuations
oppose each other. Given no magnetic field(vA = 0), we can see that we recover
ω2

k2 = c2
s, which are just regular sound waves.

3.3 Discretized magnetohydrodynamics

Following our discussion of SPH in the previous section, we discretize the ideal
MHD equations in a similar way as the Euler equations (see Eq.2.34):

dvi
a

dt
=

∑
b

mb

ρaρb

(
Sij

a

φb

φa
+ Sij

b

φa

φb

)
∇j

aW ab , (3.26)

dBa

dt
=

∑
b

mb

ρb

φb

φa

[
Ba(vab · ∇aW ab) − vab(Ba · ∇aW ab)

]
, (3.27)

Similar to its hydrodynamic counterpart the symmetric operator in the equations
of motions ensure that linear momentum is conserved. However, this is not the
case for the angular momentum conservation, as the force is no longer ensured
to be parallel between particle pairs. This is solely due to the anisotropic force
term (second term in stress tensor) as both the thermal and magnetic pressure
is isotropic. This can be shown clearly by considering the change in angular
momentum from the stress tensor in 2D(x,y) (Price, 2004):

d

dt

∑
a

(ra × va)z =
∑

a

∑
b

mamb

(
[σxx

ab − σyy
ab ] yabxab + σxy

ab

[
y2

ab − x2
ab

])
Fab

(3.28)
where σij

ab = 1
ρaρb

(
Sij

a
φb

φa
+ Sij

b
φa

φb

)
and Fabr̂ab = ∇Wab. We can see that it is

only fully conserved if the stress is isotropic and proportional to the identity
matrix. The error in angular momentum conservation will depend on the
kernel errors and the force distribution. In the continuum limit, the angular
momentum is conserved exactly. The error is negligible when the magnetic field
is weak and usually remains small in most astrophysical simulations. There are,
however, localized regions that can suffer from more non-conservation in angular
momentum, for example in strong density gradients with significant angular
momentum transport across it. There are potential solutions that can be applied
to remedy this. As shown in Bonet (1999), the kernel gradient can be replaced
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Removing the tensile instability

by a matrix operator to ensure the conservation, however, several other issues
arise with this sort of application(noisy estimate, entropy conservation, etc.).
A very interesting alternative has been presented by Müller et al. (2015), in
which a spin property is introduced for the particle. This spin parameter holds
the information of the orthogonal forces applied to the particle. The spin can
in this case be seen as an unresolved rotation of the underlying fluid element,
which effectively can interact with the surrounding particles. The spin will thus
add both translational and rotational motion to nearby particles. The work
from Müller et al. (2015) was done for smoothed dissipative particle dynamics
to resolve the anisotropic force of physical viscosity and would be interesting to
investigate its potential benefits for SPMHD in future work.

The use of the anti-symmetric operator in the induction equation ensures
that the energy is conserved due to magnetic fluctuations. However, the energy
conservation due to density fluctuations will depend on the choice of free
parameters and consistency with the density estimate. This leads to a similar
error dependence as for the entropy:

EB =
B2

ρ
(
dρ

dt
+ ∇ · v) =

B2

ρ
ES = vaES (3.29)

Here va is the Alfven speed and ES is the entropy error term from Eq.2.43.
From all the test simulations presented in this thesis this spatial error always
remained smaller than the time error for the conservation, which makes sense as
no systematic effect was seen for the entropy conservation as well. A possibility
that could be interesting to investigate is using different gradient estimates
for magnetic and pressure forces, though this could potentially lead to force
inconsistencies between the thermal and magnetic parts.

The discretized MHD equations are still missing a few parts to make it
into a proper scheme, first the stability term against the tensile instability,
second shock-capturing terms, and finally divergence cleaning procedures.

3.4 Removing the tensile instability

As we mentioned in the section introduction, we need to stabilize the equations
of motions from the tensile instability, which is due to the force of the monopole
error. There have been several solutions proposed to combat this issue: Murray
et al. (1996) proposed using different gradient estimates for the isotropic and
anisotropic parts of the stress tensor, using a symmetric term for the isotropic
and anti-symmetric form for the anti-isotropic. This improves the gradient
estimate for the magnetic tension term and ensures that the instability cannot
occur for constant magnetic field configurations. Having less dependence on the
particle configuration reduces the chance of activating the instability. This breaks
momentum conservation and still allows instability to occur. Monaghan (2000)
suggested adding an anti-clumping term to the force equation to prevent particles
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3. Smoothed particle magneto-hydrodynamics

from clumping in the presence of negative stress. Børve et al. (2001) suggested
simply removing the unphysical force arising from the monopole contribution.

f i
divB,a = −B̂i

a

∑
b

mb

ρaρb
(Ba + Bb) · ∇aW ab. (3.30)

This basically removes the divergence term (− B
ρ ∇ · B). In addition, Børve et al.

(2004) showed that the instability only occurs when 1
2 B2 > P . This means that

we only need to activate this term within the low beta regime. Following Børve
et al. (2004); Turk et al. (2012), the limiter B̂i

a was introduced:

f i
divB,a = −B̂i

a

∑
b

mb

ρaρb
(Ba + Bb) · ∇aW ab. (3.31)

Note that when β = 1, both the induction and momentum equations are
equivalent to the Powell method (Powell et al., 1999). When this term is active,
the linear momentum is no longer conserved. The degree of momentum error
will depend heavily on the divergence errors present, as thus it is still important
to try to reduce the divergence errors as much as possible.

It is important to note that the accuracy of the momentum equation will
depend on the divergence error given by the symmetric operator while the
divergence errors effect on the induction equation is given by the anti-symmetric
operator. Authors that apply a more accurate gradient estimate for their
divergence calculation post-simulation are not representative of the true errors
that actually act in the equations during the simulation.

3.5 Shock capturing terms

To treat discontinuities in SPH we usually apply artificial dissipation terms to
smooth out the fluid variables within the smoothing kernel (see Section 2.7 for
more detail). For the magnetic field we add an artificial resistivity term to our
equations (Price, 2004):

dB
dt diss

= η∇2B, (3.32)

η =
1
2

αBvsig,B |rab|. (3.33)

Here αB is the artificial resistivity coefficient, which is a dimensionless free
parameter and vsig,B is the signal speed chosen for the resistivity. Similar
to the viscosity and conduction, switches are introduced to the resistivity
to reduce dissipation away from discontinuities. Tricco and Price (2013),
uses the MHD signal velocity for vsig,B =

√
c2

s + v2
a and varies αB following

αB = min(ha|∇Ba|/|Ba|, 1) to ensure that resistivity is only strong where there
are strong gradients in the magnetic field. Wurster et al. (2017) performed a
study looking at different prescriptions of artificial resistivity, where the best
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Divergence cleaning

performance was seen by the method which simply used a constant αB together
with a signal speed:

vsig,B = |vab × r̂ab|. (3.34)
This term ensures that there is no dissipation in constant flows and provides
sufficient dissipation at magnetic discontinuities.

We discretize the second derivative in Eq.3.32 using the integral approxi-
mation(see Section 2.5):

dBa

dt diss
=

∑
b

mb

ρb

(
ηa + ηb

|rab|
)

Bab

(
r̂ab · ∇aW ab

)
. (3.35)

To conserve energy we add a corresponding internal energy term:

dua

dt diss
= −1

2
∑

b

mb

ρaρb

(
ηa + ηb

|rab|
)

B2
ab

(
r̂ab · ∇aW ab

)
. (3.36)

Compared to artificial viscosity, artificial resistivity is applied to both approaching
and receding particles as discontinuities can occur in both compressive and
expansive flows. In addition, all components of the magnetic field are dissipated
by the artificial resistivity as discontinuities can occur orthogonally to the
direction of the shock (Price, 2004).

3.6 Divergence cleaning

As we have seen from the previous sections, a large part of the accuracy of the
SPMHD method boils down to the divergence error, especially in the strong-field
regime. It is, therefore, crucial to try to keep the divergence error as close to zero
as possible. While grid codes have access to the constrained transport scheme
(Evans and Hawley, 1988) which ensures a divergence-free field up to machine
precision, it cannot easily be implemented within meshless methods, due to the
absence of regular spatial grid surfaces. The generation of divergence-free fields
in SPMHD has been explored in detail, however, all of them suffer from problems.
The advection of divergence errors in the induction equation is sometimes known
as Powell cleaning (Powell et al., 1999). However, this simply avoids the build-up
of divergence errors and ensures that the surface integral of the magnetic flux is
conserved. The biggest issue of this scheme is that it is zeroth-order and does
not improve the divergence error with resolution. The adverse effects of this
scheme are nicely laid out in Mocz et al. (2016) for moving mesh codes.

Brackbill and Barnes (1980) proposed a simple projection scheme to ‘clean up’
the magnetic field at each timestep.

B∗ = ∇ × A + ∇φ. (3.37)

Taking the divergence of B∗:

∇2φ = ∇ · B∗, (3.38)
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after solving for φ we can update the magnetic field according to:

B = B∗ − ∇φ. (3.39)

The disadvantage of this approach is that it involves the solution of a Poisson
equation which is computationally expensive. Another not often mentioned
disadvantage is that the cross-helicity for projection methods is not conserved
(Price, 2004). This is because the divergence cleaning is done independent of
the velocity field, making the magnetic field lines disconnected from the veloc-
ity field lines(flux-freezing condition), which can severely affect dynamo processes.

Another option is to generate magnetic fields from Euler potentials (B =
∇α × ∇β), which enforce the divergence constraint by construction (Price and
Rosswog, 2006). A major disadvantage of this method is that it cannot wind the
magnetic field, any full turn of the magnetic field simply resets the magnetic field.
It is thereby not possible to produce a dynamo with this method (Brandenburg,
2010).

Price (2010) showed that vector potential implementations (B = ∇ × A) are
plagued with numerical instabilities and would require stronger non-conservative
forces to stabilize the method. Stasyszyn and Elstner (2015) recently showed
that with additional diffusion, smoothing of the magnetic field, and enforcing
the Coulomb gauge (∇ · A = 0), the vector potential formalism could remain
stable for a handful of test cases. However, from personal tests of this vector
potential formalism, the method is still subject to instabilities and requires
excessive dissipation to remain stable even in the best conditions.

The best way found in SPMHD to deal with divergence error is to evolve
the magnetic field via the induction equation and then to "clean" the divergence
away. In general, this is done by introducing a separate scalar field that couples
to the induction equation, such that it produces a damped wave equation for
the divergence error. That is, the divergence is spread outward like a damped
wave. The method was first developed in Dedner et al. (2002) and was improved
by Tricco and Price (2012), who introduced a constrained version of the method.
This makes sure that the magnetic energy is either conserved or dissipated. This
was updated in Tricco et al. (2016) to correctly allow variable cleaning speed,
which further improved the method. In this method, a scalar field ψ is coupled
to the induction equation as follows:(

dB
dt

)
ψ

= −∇ψ. (3.40)

The scalar field ψ evolves according to:
d

dt

(
ψ

ch

)
= −ch∇ · B − 1

τ

ψ

ch
− 1

2
ψ(∇ · v). (3.41)

where τ is the decay time and ch is the wave cleaning speed:

ch = fcleanvmhd, (3.42)
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vmhd =
√

c2
s + v2

A, (3.43)

vA =

√
B2

ρ
. (3.44)

Here, cs is the speed of sound, vA the Alfvén velocity, and fclean is an overcleaning
factor. The fclean factor can be used to increase the amount of divergence
cleaning, however, this will reduce the timestep2 according to Δt → Δt/fclean.
Combining the cleaning equation with the induction equation produces a damped
wave equation for the divergence (this form assumes constant ch and τ):

∂2(∇ · B)
∂t2 − c2

h∇2(∇ · B) +
1
τ

∂(∇ · B)
∂t

= 0, (3.45)

which effectively shows that the divergence is spread out and damped. The
decay time is given by:

τa =
ha

ch,aσc
. (3.46)

Here, σc is a dimensional constant, and was shown to be optimal with a value of 1
in 3D. Following Tricco and Price (2012), ∇ψ is discretized using the symmetric
gradient operator (Eq.2.29) and ∇·B using the anti-symmetric gradient operator
(Eq.2.32). Following the previous general discretization, the cleaning equations
become: (

dB
dt

)
ψ,a

= −
∑

b

mb

ρb

(
ψa

φb

φa
+ ψb

φa

φb

)
∇aW ab, (3.47)

d

dt

(
ψ

ch

)
a

= ca
h

∑
b

mb

ρb

φb

φa
Bab · ∇aW ab +

ψa

2ca
h

∑
b

mb

ρb

φb

φa
vab · ∇aW ab − ψa

ca
hτa

.

(3.48)
The divergence cleaning dissipates energy from the magnetic field. However, this
term is so small compared to the other dissipation terms that it is not worth
accounting for. We could, of course, add this energy to heat and conserve energy,
however, as discussed by Tricco and Price (2012), the removal of magnetic
energy and subsequent generation of thermal energy would be non-local due to
the coupling of parabolic diffusion with hyperbolic transport. Due to this, we
simply removed the energy.

To ensure that simulations are not affected by the divergence error, we monitor
the normalized divergence error:

εdivB =
h|∇ · B|

|B| . (3.49)

2This is a significant increase in computational cost, so it is in general not recommended
to use an fclean value above 1. But it does allow for a simple way to reduce the divergence
error if that is required.
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The mean of this quantity should preferably remain below 10−2. However,
regions of locally high divergence error can occur, so careful inspection of the
divergence error is required to ensure the quality of simulations.

There is also a new hybrid constrained-gradient(CG) scheme developed for
the MFM code (Hopkins, 2016). This iteratively approximates a globally
divergence-free reconstruction of the fluid, which leads to sort of an approximate
form of the traditional projection method(but at a cheaper cost). This results in
lower divergence errors compared to divergence cleaning methods(albeit at a
higher cost). It is unclear if this kind of method will destroy the cross-helicity
conservation as seen in traditional projection methods (Price, 2004).

3.7 Additional conserved quantities

In addition, to the standard conservation laws there are additional conserved
quantities within MHD (see Morrison and Hazeltine (1984)). The first is the
magnetic helicity:

H =
∫

(A · B)dV (3.50)

Here A is the vector potential and is a measure of the linkage of magnetic field
lines. This quantity can only be accurately tracked in numerical schemes that
evolve the vector potential. Another quantity that is conserved in ideal MHD is
the cross-helicity: ∫

(B · v)dV ≈
∑

b

mb
Bb

ρb
· vb (3.51)

Which is a measure of the mutual linkage between the magnetic field and velocity
field. This quantity is conserved due to the flux-freezing condition of MHD.
The addition of diffusion adds a degree of slippage and non-conservation to this
quantity. It can be used to determine how well the numerical scheme adheres to
the flux-freezing condition and is likely an important quantity to correctly model
dynamo effects. Due to its Lagrangian nature, this is very nicely conserved in
SPH. Two other conserved quantities are the volume integral and surface integral
of the magnetic field: ∫

BdV ≈
∑

a

ma
Ba

ρa
(3.52)

∫
B · dS =

∫
(∇ · B)dV ≈

∑
a

ma
(∇ · B)a

ρa
(3.53)

As we discussed in Section 3.1, the chosen MHD equations ensure that the surface
integral is conserved, but sacrifice the conservation of the volume integral to do
so. The surface integral is by far the more important quantity to correctly model
(especially for shocks) (Janhunen, 2000; Price, 2004). There is an additional
non-conservation error that can occur in SPH due to the discretization of the
induction equation, as the anti-symmetric gradient operator is used (flux is not
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symmetric between particle-pair). Non-conservation in the volume integral is
usually very small but can play a role in sensitive systems such as the magneto-
rotational instability simulations performed in paper 2. As this non-conservation
effectively generates tiny mean-fields in the box, which in turn can induce a
mean-field dynamo process (see Section 3.8). This error will mainly be dependent
on the monopole error and a discussion on how to treat these errors is discussed
in paper 2. Another conserved quantity relates to the MHD analog to circulation
(Bekenstein and Oron, 2000). SPH has been shown to follow an approximation
circulation conservation in hydrodynamics (Monaghan and Price, 2001), but this
has not yet been shown to hold true for the SPMHD analog, although it might
be expected to do so due to its Lagrangian nature.

3.8 Dynamo theory

A magnetic dynamo describes the exponential growth and sustenance of magnetic
fields due to being stretched, twisted, and folded by the underlying fluid motions.
While specific velocity field configurations can lead to dynamo action (laminar
dynamo), astrophysical fluids are usually highly turbulent, where motion is
chaotic across a large range of spatial scales. Dynamo action can occur across all
turbulent scales, but the magnetic field is stretched faster by the smaller scale
motions than the larger-scale ones, leading to a faster growth on smaller scales
(known as the small-scale dynamo) (Kulsrud and Anderson, 1992; Kulsrud,
1999). In ideal MHD, the growth rate is set primarily by the viscous scale of the
fluid. However, for MHD with diffusion of the magnetic field (resistivity), this
is no longer necessarily true, as the magnetic fields on small scales can now be
damped quickly. This makes the growth of the magnetic field more intricate, as
it is determined by the relationship between the viscous scale lv and the resistive
scale lη (Spitzer, 1962). The ratio between these two, the magnetic Prandtl
number Pm = lv

lη
is thus very important in the resulting characteristic and

saturation of the turbulent dynamo (Schekochihin et al., 2004). For Pm > 1 the
quickest twisting and folding of the magnetic field is driven at the viscous scale,
where the underlying velocity field is smooth as there are no smaller velocity
structures in the flow at this scale. The chaotic but smooth motion at this scale
lends itself to dynamo action, which means that magnetic fields can efficiently
be generated (Văinshtĕin and Zel’dovich, 1972; Zeldovich, 1983; Zeldovich et al.,
1990). The cut-off scale of magnetic fluctuations will still be set by the resistive
scale, which allows for a buildup of power within the subviscous range. With
higher Pm values than one, more of the subviscous scale becomes available for
magnetic field amplification (Kulsrud and Anderson, 1992; Schekochihin et al.,
2004).

The small-scale dynamo has been shown to be a possible mechanism for
amplifying the weak seed fields in the early universe to magnitudes observed in
galaxies today (Boulares and Cox, 1990; Beck et al., 1996; Kulsrud et al., 1997).
However, magnetic fields in the universe exhibit a high degree of coherence at
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Figure 3.2: The rendering depicts the non-linear magnetic turbulence from
simulations of a stratified shearing box. This is caused by the magneto-rotational
instability, which destabilizes the shearing flow and generates turbulence. A
feedback loop between the turbulence and magnetic field ensues due to underlying
dynamo processes, leading to sustained turbulence in the box. The turbulence
can subsequently act as a driver for angular momentum transport within
accretion disks. Positive/negative azimuthal magnetic fields are depicted as a
bluish/reddish rendering.

scales larger than the underlying turbulent motion (Beck et al., 2005; Beck, 2015).
Mean-field dynamo theory is an attempt to explain how these coherent large-scale
magnetic field structures can be generated in highly turbulent environments. In
essence, it investigates how the small-scale kinetic and magnetic fluctuations
couple to the underlying large-scale fields.

To figure out the effect of the small-scale field on the large-scale field, it
is useful to introduce the formalism of mean-field theory (Moffatt, 1978; Parker,
1979; Krause and Raedler, 1980; Ruzmaikin et al., 1988; Brandenburg and
Subramanian, 2005). Assuming a scale separation between the large-scale and
small-scale, both the magnetic and velocity fields can be decomposed to a
mean-field component (B and U ) and a fluctuating component (b and u):

B = B + b U = U + u (3.54)
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Averaging the induction equation leads to the evolution equation for the magnetic
mean-field:

∂B

∂t
= ∇ × (U × B) + ∇ × E + η∇2B (3.55)

Here U represents the large-scale velocity structure, η the magnetic diffusivity
and E is the electromotive force (EMF) produced by the fluctuating fields.

E = u × b (3.56)

By studying how the fluctuating u and b fields reacts to an applied mean field,
it can be shown that both u and b contain a component independent of the
mean-field and an additional term which is linearly dependent on the applied
mean-field.

b = b0 + bB u = u0 + uB (3.57)

Assuming the indepentent terms b0 and u0 are uncorrelated(E0 = u0 × b0 = 0)
and the assumption of scale separation, we can expand E in a Taylor series in B
and U :

Ei = αijBj − ηijJj + γijΩj + ... (3.58)
Here α, η and γ are the tensorial transport coefficients and J = ∇ × B is the
mean-field current density and Ω = ∇ × U is the mean-field vorticity. The first
term of Eq. 3.58 is the α-effect in which the small-scale turbulence generates
an EMF which is proportional to the mean-field itself. This effect, coupled
together with differential rotation, can develop the well-known αω dynamo. The
alpha-effect depends crucially on the small-scale helicities within the turbulent
flow, which require the system to break statistical symmetry either by strati-
fication or through having a net helicity (Pouquet et al., 1976; Moffatt, 1978;
Brandenburg and Subramanian, 2005). The alpha-effect can by itself(without
differential rotation) drive a dynamo, where in addition to the poloidal fields,
the toroidal fields are generated by the alpha-effect as well. This is known as an
α2-dynamo. The second term in Eq. 3.58 generates an EMF in proportion to
the mean-current and can act to either amplify or diffuse the mean-field. The
diagonal components of ηij describe the turbulent diffusion of the mean-field
and the off-diagonal components ηij are responsible for the dynamo produced by
the Ω × J effect (Rädler, 1969) and the shear current effect (Rogachevskii and
Kleeorin, 2003), that can occur without net helicity. The last term of Eq. 3.58
is the Yoshizawa effect, which acts without the need for a large-scale magnetic
field and can be seen as a turbulent battery mechanism (Yoshizawa and Yokoi,
1993; Yokoi, 2013). In addition to a mean vorticial velocity component, the
effect requires small-scale cross-helicity between the turbulent fields (u · b).

Another type of mean-field dynamo that has recently emerged as a very
interesting prospect for dynamo growth within astrophysical disks, is the
gravitational-instability(GI) dynamo (Riols and Latter, 2019). This is a dy-
namo that is sustained by the gravito-turbulence injected during spiral arm
compression, which generates vertical rotating flow rolls(see Figure3.3). Dur-
ing compression the toroidal field is pinched, lifted, and folded by these flow
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rolls, generating new radial fields. These radial fields are then sheared by the
differential rotation generating toroidal fields, closing the dynamo loop. This
is different than the αΩ dynamo as it is governed by larger-scale motions than
the turbulent helical motions. The growth rate of this dynamo seems to depend
strongly on the cooling rate and the effective magnetic Reynolds number.

Figure 3.3: A figure diagram depicting different turbulent dynamo processes.
Top figure shows the small-scale dynamo process, which include the stretching,
twisting and folding of magnetic field lines due to turbulence. Right bottom
figure show the classical αΩ-dynamo loop and the shear-current dynamo loop.
Figure in the bottom left, depicting GI-dynamo is from Riols and Latter (2019).
Here we can see that the compression of the spiral arm generates vertical rolls
above the disk, which in turn leads to the generation of mean fields within the
disk.
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Chapter 4

Numerical Simulations of Galaxies

Figure 4.1: Rendering of the magnetic field strength for a simulated Milky Way-
type galaxy (M = 1012M�), with a gas mass resolution of around m = 102M�.
The highest magnetic field strength is dark blue; moderate strength is white and
the weakest magnetic field is represented as red. From this figure, we can see
that the magnetic field from the galactic disk is transported outwards to the
CGM by the galactic outflows.

The first attempt to simulate a galaxy was actually not done by a numerical
scheme on a digital computer. Instead, it relied on the light flux from a bunch
of light bulbs to simulate the effect of gravity, both of which scale as r−2. The
"fluid" parcels of the galaxy were constructed of light bulbs and photocells
were used to measure the collective light flux/force on each light bulb. Then a
"timestep" is taken, where each of the light bulbs is moved with respect to the
measured flux. Using this method, Holmberg (1941) remarkably simulated the
tidal interaction between two merging galaxies. Numerical simulations on digital
computers eventually came along that could model the effects of gravity. Due to
the computation power at the time early simulations of galaxies could only use
around 100-1000 particles. Nevertheless, these simulations were successful in
showing many of the complicated morphologies that could be formed in galactic
mergers/interactions (Toomre and Toomre, 1972; Eneev et al., 1973; Lauberts,
1974).
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Nowadays galaxy simulations include considerably more physics and utilize
millions or even billions of particles to model the galaxy. This includes the
gravitational interaction between dark matter, stars and gas (Aarseth and
Fall, 1980; Stadel, 2001; Dehnen, 2002); the hydrodynamic modeling of gas
(Teyssier, 2002; Wadsley et al., 2004; Springel, 2010); the formation of stars
(Katz, 1992); the feedback/output from supernova and stellar winds (Katz,
1992; Springel and Hernquist, 2003); the feedback/output from black holes (Di
Matteo et al., 2005); the radiative cooling of gas (Marri and White, 2003; Shen
et al., 2010). Simulations are also now beginning to include the modeling of
the radiation field through radiative transfer (Gendelev and Krumholz, 2012;
Krumholz and Thompson, 2013); non-equilibrium cooling (Capelo et al., 2018);
magnetohydrodynamics (Pakmor and Springel, 2013; Rieder and Teyssier, 2017);
modeling of cosmic rays (Butsky and Quinn, 2018; Thomas and Pfrommer, 2019;
Hopkins et al., 2020).

Galaxy simulations provide a large tangled web of numerical complexity
due to the vast amount of physical processes involved. These processes also
take place over temporal and spatial scales that span many orders of magnitude.
Due to our resolution constraint, some of these processes need to be resolved
by so-called "sub-grid" recipes that try to model the macroscopic effects of
non-resolvable processes.

The study of individual galaxies is done by either isolated galaxy simula-
tions or zoom-in simulations. Isolated galaxy simulations are constructed from
an equilibrium solution to the Jeans equation for a multi-component system
including the halo, disk, and bulge (Springel et al., 2005). These simulations
are easy to compare with work from other groups and can be run at very high
resolution, making them ideal to investigate the internal processes within galax-
ies. Zoom-in simulations of galaxies re-simulate a region from a cosmological
simulation at a much higher resolution. This represents more realistic initial
conditions for galaxies as it takes into account the cosmological environment
(Navarro and White, 1993).

The purpose of this chapter is to get an overview of the additional physics that
goes into galaxy simulations. As magnetic fields in galaxies are discussed in
detail in paper 3, we have omitted any discussion of the magnetic field in this
chapter. The chapter is outlined as follows: In Section 4.1 we go through the
implementation of gravity; Section 4.2 we discuss the gravitational softening
and the issues involved in setting it; Section 4.3 we describe how star formation
is implemented; Section 4.4 we discuss how radiative cooling is implemented
in modern galaxy simulations; Section 4.5 we discuss the importance and the
recent efforts in modeling feedback in galaxy simulations.
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4.1 Gravity

The evolution of a self-gravitating fluid can be described by the coupling of the
collisionless Boltzmann equation:

df

dt
=

∂f

∂t
+ v

∂f

∂r
− ∂Φ

∂r

∂f

∂v
= 0 , (4.1)

and Poisson’s equation:

∇2Φ = 4πG

∫
fdv = 4πGρ (4.2)

Here f(r, v, t) describe the phase-space distribution function of the self-gravitating
fluid. To properly model the phase-space distribution (due to its dimensionality)
N-body codes are used. Here the fluid is modeled using particles where the
underlying distribution function is given by the phase-position of the particles.
The accuracy of this will of course depends on the number of particles used to
sample the phase-space distribution of the system. Finally, we need to calculate
the gravitational potential to close the system. There are several ways to estimate
the gravitational potential, the first and slowest way is to simply discretize the
integral of the Poisson equation and solve for all particles:

Φ(r) = −G
N∑

b=1

mb

|r − rb| (4.3)

There are two major problems with this. First, the potential goes to infinity
as r− > rb, which results in nonphysical two-body scattering. Second, the cost
of this calculation goes as O(N2), which would quickly limit the resolution
that we could use for simulations involving self-gravity. The first issue can be
resolved by adding a so-called softening length, which reduces the gravitational
interaction between particles at small scales. The computational cost of the
method can be resolved by separating the force calculation into a long-range
component and a short-range component. The long-range component is solved
by partitioning up the system space and using the larger-cell regions to estimate
the collective gravitational interaction from that region (Barnes and Hut, 1986).
The short-range force calculation is still done by regular summation, but this
effectively reduces the cost of solving the gravitational potential to O(N log N).

Mesh codes instead rely on solving the differential form of the Poisson equa-
tion, which can be solved using fast Fourier transform-based methods. Here
the potential is automatically softened on the scale of the grid cells and the
computational cost of the method goes as O(N log N). These methods can also
be combined, performing summation for the short-range component of gravity
and using fast Fourier transforms for the long-range component (Efstathiou
et al., 1985; Kravtsov et al., 1997; Bode and Ostriker, 2003).
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4.2 Gravitational softening

The gravitational softening within N-body code and SPH warrants some more
discussion. The gravitational softening can be seen as either a modification to
the laws of gravity or equivalently as a smoothing of the mass (Dehnen, 2001;
Barnes, 2012). One of the most simple ways to add softening is with the use of
Plummer softening, where each particle is replaced with a Plummer sphere of
scale ε.

Φ(r) = −G

N∑
b=1

mb√
ε2 + (r − rb)2

(4.4)

Here the mass is spread over all space with a scaling factor of ε. A better way
to apply the softening can be obtained by instead using a softening kernel:

Φ(r) = −G
N∑

b=1
mbφ(|r − rb|, ε) (4.5)

Here the mass is spread within the given softening kernel(φ) with softening
length ε. This will be the same or a similar kernel to the one used in SPH. This
yields significantly lower force errors than the classical Plummer model(Dehnen,
2001).

The softening is introduced to reduce the fluctuations owing to shot noise,
but at the same time, it biases the gravitational force within ε. Determining
the optimal ε which produces the best compromise between these two effects is
thus desirable. However, the choice of ε in simulations remains fairly arbitrary,
as it can be difficult to estimate what the optimal softening for a simulation is.
It might also be that there is no single constant softening that is optimal for
the whole simulation. The topic of a constant softening length also plays a role
when it comes to simulating self-gravity together with SPH.

The softening length can be seen as a sort of resolution length for the gravita-
tional force, where inside the force becomes smoothed in a similar manner as
the SPH force. In SPH we use a varying resolution length that depends on the
density, while for gravity we use a constant resolution length. This means that
there is a mismatch between the gravitational force and the SPH force. This has
shown to be potentially problematic in SPH simulations involving self-gravity,
leading to either suppression of collapse(ε > h) or artificial fragmentation(ε < h)
(Bate and Burkert, 1997). This can be resolved by varying the softening length
in the same manner as the smoothing length (Price and Monaghan, 2007). In
terms of consistency, this makes a lot of sense, as it makes the hydrodynamic
volume equal to the gravitational volume. However, there is an additional
numerical cost involved in doing this. The first cost comes from calculating the
new softening length, which if done for all particles would require a neighbor
search of order (O(NNneigh) compared to just the gas particles(O(NgasNneigh).
In theory, we could only use varying softening for the gas particles, as these
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are the ones that need to be consistent with the hydrodynamics. However, this
would mean that the effective smoothed mass density between particle species
would differ, leading to a potential force bias mismatch. In addition, allowing
for varying softening lengths requires additional correction factors to correctly
conserve the energy of the system, which can be difficult to properly implement
and adds to the numerical cost. For Gasoline2 the negative aspects of variable
softening outweigh the potential gain, and a constant softening length is chosen
given the highest density/smallest spacing we want to resolve in the simulation:

ε = (m/ρmax)1/3 (4.6)

4.3 Star formation

The resolution in galaxy simulation does not allow us to capture the formation
of individual stars in molecular clouds. In fact, the molecular clouds themselves
are not necessarily captured by the simulation, requiring us to construct star
formation recipes that can capture the unresolved formation of stars within
molecular clouds. Stellar populations within simulations are modeled using
collisionless star particles. The stellar distribution of these star particles is
described by an underlying initial stellar mass function (Kroupa, 2001; Chabrier,
2003). The star particles are allowed to be formed when gas within the simulations
reaches a pre-determined threshold for stellar formation, in which part of the
underlying gas elements can be transformed into star particles. There are many
criteria that can be chosen to determine the threshold to make gas eligible for
star formations. The most common ones include a density threshold (Springel
and Hernquist, 2003; Stinson et al., 2006; Vogelsberger et al., 2014), Jeans-length
based criteria (Teyssier et al., 2013; Trebitsch et al., 2017), molecular gas-phase
requirement (Gnedin and Kravtsov, 2011; Feldmann et al., 2012; Christensen
et al., 2012), converging flows (Stinson et al., 2006) or a combination of these.
Gas that are eligible to become star particles do so using a probabilistic sampling
scheme based on the star formation rate. The star formation rate is usually
computed using the Kennicutt-Schmidt type relation (Schmidt, 1959; Kennicutt,
1998):

ρ̇∗ = εSF
ρgas

tff
(4.7)

Here εSF is the star formation efficiency and tff = 1√
4GπρSF

is the free fall time.
The probability of forming a star particle each time step is then given by:

PSF = 1 − exp
(

−εSF Δt

tff

)
(4.8)

Here Δt is the length of the current timestep. From observations we have an
estimated star formation efficiency in molecular gas, that is of the order 1%
(Bigiel et al., 2011; Krumholz and Gnedin, 2011).
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4.4 Gas cooling

Ionized gas is subject to cooling processes that dissipate the thermal energy
through (collisional excitation and ionization, inverse Compton, recombination,
and free-free emission). In numerical simulations, the cooling processes are
included as source terms in the internal energy equation. These are determined
by a so-called cooling function that is determined by the ionization fractions,
density, and metallicity of the gas. Traditionally the gas has been assumed
to be optically thin and in ionization equilibrium, leading to a more simple
calculation of the ionization fraction (Sutherland and Dopita, 1993). In most
modern simulations the ionization is determined by the background radiation
field, which is assumed to be spatially uniform but redshift dependent (Wiersma
et al., 2009; Shen et al., 2010). The accuracy of ionization equilibrium depends
on the relation between the ionization time scale and the other dynamical time
scales. For example, the assumption of equilibrium becomes bad when you
have a rapidly changing radiation field or if the gas is cooling quickly. Recently
there are efforts in including a self-consistent radiation field through radiation
transfer codes (Petkova and Springel, 2009, 2011; Kannan et al., 2019) and
non-equilibrium cooling (Richings and Schaye, 2016; Capelo et al., 2018; Kannan
et al., 2020).

To save on computational cost the ionization rate is only calculated based
on a handful of chemical species. The primordial elements (H,He) are the main
drivers of cooling and heating in most environments, however, metal (heavier
elements) cooling has shown to become dominant for a temperature of around
105 ↔ 107 (Sutherland and Dopita, 1993; Shen et al., 2010). Following all the
cooling processes would require enough resolution to resolve the multi-phase
structure of the gas. The cooling functions are extracted from either cooling
tables (Ferland et al., 2013) or chemical network codes (Grassi et al., 2014).

4.5 Feedback

Early simulations including gravity, star formation, and cooling resulted in
significant fragmentation and unrealistically compact morphologies with star
formation rates an order of magnitude higher than observed (Stinson et al.,
2006; Agertz et al., 2013). This prompted the need to model the energy output
processes in galaxies to suppress the excessive star formation rates and produce
more realistic galaxies. These processes are known under a collective name as
feedback processes, which add energy to the ISM. There are three primary ways
in which feedback regulates star formation. The first is through the ejection of
gas from the ISM, which depletes the "fuel" of the star formation process (Larson,
1974; Heckman et al., 1987). The gas will in most cases still be bound to the
galactic halo but can take many Gyrs to return to the ISM. The second-way
feedback regulates star formation is through the disruption of the cold gas
clumps where stars are formed (Rogers and Pittard, 2013). The third way is
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that the energy output of feedback limits the formation of cold clouds from the
warmer gas by increasing the scale height of the ISM (Ostriker et al., 2010).

One of the primary sources of feedback energy in galaxies is generated by
massive stars (M > 5M), which live short but highly-energetic lives. Producing
strong stellar radiation and fast stellar winds during their lives (Weaver et al.,
1977; Krumholz and Matzner, 2009) and die in a highly energetic core-collapse
supernova, discharging around 1051 erg amount of energy to the surrounding gas
(Wilson, 1985; Bethe, 1990). While smaller stars in clusters collectively produce
similar energies during their lifetime, this mainly comes in the form of radia-
tion which couple weakly with the ISM resulting in only a small deposit of energy.

The supernova explosion starts a shock expansion process, where mass from
the ISM is continuously swept up by the newly formed forward shock front.
Meanwhile, a reverse shock is generated which heats the inside region of the
expanding shock bubble. Initially, the losses from radiation are negligible
and we have an adiabatic expansion, during this phase, the momentum of the
expansion is significantly boosted (Sedov-Taylor phase) (Taylor, 1950; Sedov,
1959; Chevalier, 1974). This process is diminished as a dense shell is formed at
the shock front and radiative losses start to become important, transitioning
from an energy-conserving to momentum-conserving evolution. Modeling the
energy transfer from thermal to kinetic energy during the Sedov-Taylor phase is
crucial for numerical methods to correctly model the effect from feedback. As
we are often under-resolving the length-scales corresponding to the Sedov-Taylor
phase, special numerical schemes are needed to correctly capture the effective
momentum imparted to the ISM. In addition, as massive stars exist in tandem
with each other in star clusters, the individual supernovas can interact with
each other as they expand, generating a collective expansion bubble known as a
superbubble (Weaver et al., 1977).

The main difficulties with including feedback in galaxy simulations relate
to the resolution constraint of the Sedov-Taylor phase and getting the subgrid
scheme to work properly with the rest of the physics. This is evident when
combining feedback with radiative cooling at lower resolution. One of the earliest
modelings of feedback did so with a thermal dump (as would be the case in a
resolved case), where the star particle discharges its energy as thermal energy to
nearby gas particles. However, due to the wider numerical shock widths / larger
resolution lengths, the hot feedback gas will quickly mix with the cold ISM
resulting in gas with short radiative cooling times. If left unhandled this can lead
to complete loss of the feedback energy before it can exert momentum to the
surrounding gas (Katz, 1992). This has been tackled in several ways. One way
is to temporarily disable cooling for gas that is inside the approximated Sedov
blast wave radius (McKee and Ostriker, 1977; Thacker and Couchman, 2000;
Stinson et al., 2006). Another popular way is to instead deposit the feedback
energy to kinetic energy (Navarro and White, 1994; Scannapieco et al., 2006;
Dubois and Teyssier, 2008; Dalla Vecchia and Schaye, 2008). However, due to
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the high-velocity gradients injected by this method, strong shocks will develop
that convert the kinetic energy back to thermal energy, which can once again be
efficiently radiatively cooled (Durier and Dalla Vecchia, 2012). To avoid this
problem, decoupling schemes have been developed that decouple the gas affected
by the feedback from interacting with the gas inside the ISM (Sun and Takayama,
2003; Vogelsberger et al., 2013). This kind of feedback depends heavily on
the resolution and the numerical parameters (Dalla Vecchia and Schaye, 2008).
Another alternative is to try to predict the missed momentum boost during
the Sedov-Taylor phase. This is done by determining the under-resolved part
of the expansion and boosting the momentum accordingly, either analytically
(Hopkins et al., 2014; Kimm and Cen, 2014) or by fitting to high-resolution
supernova simulations (Martizzi et al., 2015). In Gasoline2 we primarily use the
superbubble feedback model from Keller et al. (2014). This separates the cold
and hot phases, which effectively resolves the overcooling issue. In addition, the
evolution of the superbubble is made less resolution-dependent with the help of
thermal conduction and subgrid evaporation, which regulates the hot and cold
phases without the need for a free parameter.

Significant feedback can also come from accreting supermassive black holes, in
the form of radiation, jets, and less-collimated outflows. This feedback is often
divided into two modes in numerical implementation, the quasar mode, and radio
mode. The quasar mode represents the radiatively efficient part of the feedback
that comes from the viscous heating and subsequent radiation of the accretion
disk (Antonucci, 1993). This is often implemented similar to the SN feedback
through thermal or momentum injection (Springel et al., 2005; Di Matteo et al.,
2005). The radio mode feedback comes from the relativistic-collimated jets
launched by the supermassive black hole. These are formed on the scale of the
Schwarzschild radius but can induce a significant dynamic effect on gas that is
several kpcs away from the galaxy. This means that from the scale of accretion
there is a wide range of dynamic scales that needs to be correctly captured by
the subgrid method (Sijacki et al., 2007; Weinberger et al., 2017; Bourne and
Sijacki, 2021), which has historically made this type of feedback recipe very
uncertain.

Another important component that can produce a significant feedback channel
is cosmic rays (CR), which energy content has been observed to be in equiparti-
tion with the kinetic and magnetic energy within galaxies (Boulares and Cox,
1990). CR are charged particles that are accelerated to relativistic speeds in
extreme astrophysical shocks (supernova explosions). Although their velocities
are relativistic, CR is scattered by magnetic fields and is confined within the
galaxy for tens of millions of years. The interactions with the gas provide
non-thermal pressure support which can then drive galactic outflows and alter
the temperature and ionization state of the gas in the CGM. CRs allow for
winds that are significantly cooler than regular thermal winds, which is relevant
as large reservoirs of cold (T ∼ 104K) gas are observed out to and beyond the
virial radius in the CGM. Reliable modeling of CRs is, however, a complicated
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matter as the physics determining their transport is governed by interactions
between the CRs and Alfvén waves on the scale of the gyroradius. This is way
below any attainable resolution in galaxies, as such approximations are required
to capture the global transport. However, before even thinking of modeling CRs
the numerical dependencies and resolution requirements of the magnetic field in
galaxies should be fully explored and understood.
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Chapter 5

Summary and future work

In the past chapters, we have gone through the background of the numerical
methods that I used in my thesis papers and presented the physics involved in
modern galaxy simulations. Below follows a short summary of the scientific work
that I have done during my years as a Ph.D. student:

Paper I I have developed an MHD method for smoothed particle hydrodynamics
that takes advantage of new gradient operators to improve the accuracy of
the method near density discontinuities. We implement ideal MHD in the
Gasoline2 and Changa codes with both GDSPH and traditional SPH
(TSPH) schemes. A constrained hyperbolic divergence cleaning scheme
is employed to control the divergence error, and a switch for artificial
resistivity with minimized dissipation is used.

We test the codes with a large suite of MHD tests and show that in
all problems the results are comparable or improved over previous SPMHD
implementations. While both GDSPH and TSPH perform well with
relatively smooth or highly supersonic flows, GDSPH shows significant
improvements in the presence of strong discontinuities and large dynamic
scales. In particular, when applied to an astrophysical problem of the
collapse of a magnetized cloud, GDSPH realistically captures the devel-
opment of a magnetic tower and jet launching in the weak-field regime,
and exhibits fast convergence with resolution, while TSPH failed to do
so. Our new method shows qualitatively similar results to the ones from
the meshless finite mass/volume (MFM/MFV) schemes within the Gizmo
code, while remaining computationally less expensive.

Paper II The initial idea of this paper was prompted by the result from Deng
et al. (2019), which showed that SPH simulations of the magneto-rotational
instability(MRI) in stratified shearing boxes suffer from runaway growth
and develop unphysically strong magnetic fields. This was shown to
be avoided by the meshless finite mass/volume (MFM/MFV) schemes.
In this paper, we showed that our method does not suffer from this
runaway growth and could reproduce the characteristic "butterfly" di-
agram of the MRI dynamo with saturated turbulence for at least 100 orbits.

In addition, we presented a thorough numerical study on the MRI
using SPMHD, looking at different initial setups and a wide range of
resolution and dissipation parameters. We show, for the first time, that
MRI with sustained turbulence can be simulated successfully with SPH,
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with results consistent with prior work with grid-based codes, including
saturation properties such as magnetic and kinetic energies and their
respective stresses.

We investigated the dependency of MRI turbulence on the numerical
Prandtl number(Pm) in SPH, focusing on the unstratified, zero net-flux
case. We found that turbulence can only be sustained with a Prandtl
number larger than ∼ 2.5, similar to the critical values for the physical
Prandtl number found in grid-code simulations. However, unlike grid-based
codes, the numerical Prandtl number in SPH increases with resolution, and
for a fixed Prandtl number, the resulting magnetic energy and stresses are
independent of resolution. Due to the strong dependencies on the numerical
Prandtl number, we stress that numerical analysis of the numerical Prandtl
number should be done by all codes to assess its dependencies.

Mean-field analyses were performed on all simulations, and the resulting
transport coefficients indicate no α-effect in the unstratified cases, but
an active αω dynamo and a diamagnetic pumping effect in the stratified
medium, which are generally in agreement with previous studies.

Paper III In this paper, we investigate the amplification of magnetic fields
within isolated galaxy simulations. As we have seen from the previous
chapter, global galaxy simulations provide a large tangled web of numerical
complexity due to the vast amount of physical processes involved. Un-
derstanding the numerical dependencies that act on the galactic dynamo
is a crucial step in determining what resolution and what conditions are
required to properly capture the magnetic fields observed in galaxies.

The result shows that there is a strong mean-field dynamo occurring
in the spiral-arm region of the disk, likely produced by an αω type dy-
namo. Without star formation and feedback, the amplification is highly
determined by the cooling and the smallest collapse-length set by the
Jeans floor. As this determines the degree of fragmentation within the
disk. Amplification is driven by shear and vertical motions within the
filamentary structure that forms around and between fragments(αω-effect).

The inclusion of feedback is seen to work in both a destructive and
positive fashion for the amplification process. Destructive interference for
the amplification occurs due to breakdown of filament structure in the disk,
increase of turbulent diffusion, and the ejection of magnetic flux from the
central plane to the CGM. The positive effect of feedback is the increase
in vertical motions and the turbulent fountain flows that develop, showing
a high dependence on the small-scale vertical structure and the numerical
dissipation within the galaxy. Galaxies with an effective dynamo, saturate
their magnetic energy density at levels between 10-30% of the thermal
energy density.
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Compared to the result of the MRI in the previous paper, we find
that the density averaged numerical Prandtl number is below unity
throughout the galaxy for all our simulations. Given a turbulent injection
length of 1kpc, the numerical magnetic Reynolds number is within the
range of (Remag = 10 − 400), indicating that some regions are below the
levels required for the small-scale dynamo (Remag,crit = 30 − 2700) to be
active.

5.1 Future work

After reading the introductory chapters and the papers in this thesis it should
be clear that there is a lot of work to be done within the area of numerical
methods and galaxy formation in regard to magnetic fields. I’ve listed some of
these below:

SPH improvements :

Many improvements to the numerical method have been hinted at during
the introduction chapters of this thesis. SPH is very dependent on the
distribution of particles within the kernel, this means that there will
always be less accuracy at density gradients/open boundaries due to the
asymmetry in the particle distribution. This is improved by the GDSPH
gradient operators by making the errors less sensitive to density gradients.
Further improvements can potentially be made here by improving the
partition of unity condition, which can be shown to directly improve
the gradient estimate (García-Senz et al., 2021). In addition, this would
naturally make the GDSPH method more thermodynamic consistent (see
Section 2.4). The effective improvement of the method versus the potential
costs of improved volume partitioning needs to be investigated further in
future work.

GDSPH and improved volume partitioning are mainly improvements
in regard to density gradients, there are however other consequences of
asymmetry in the particle distribution. The most famous one comes from
shearing flows, which add asymmetries to the particle distribution that in
conjunction with the shearing flow itself result in slightly biased gradient
estimates. This is most clear when looking at the divergence estimate
∇ · v in shearing flows, which in the presence of shear erroneously detect
compression even if the velocity field is divergence-free. This is usually
corrected for in the artificial viscosity by doing a linear correction to the
divergence estimate (Cullen and Dehnen, 2010). However, this can also
be corrected by making the gradient-operators linear-exact, this can be
done by deriving the SPH gradients from an integral approach, dividing
by the first-order position matrix (García-Senz et al., 2012). This can
also generally improve the errors for MHD as it makes the induction

53



5. Summary and future work

equation second-order at all times. This can in addition be combined with
both GDSPH and improved volume partitioning. There exist higher-order
bias errors in the gradient estimate due to the asymmetry induced by
shearing flows, these can be shown to be directly proportional to the
underlying particle noise. Potentially higher-order corrections can be done
by reconstructing the kernel gradient taking into account higher orders of
the position matrix (though the benefit vs the additional computational
cost for this seems excessive).

Alternatively, some of these issues might be tackled by non-spherical
smoothing kernels that can adjust their smoothing length in each direction
to balance the asymmetry in the particle distribution. Though one needs
to be very careful with non-spherical kernels as they can induce angular
momentum errors.

In addition, it would be interesting to apply higher-order magnetic
field reconstruction and slope limiters for the artificial resistivity (as
was done for viscosity/conduction by Rosswog (2020)). Furthermore, an
interesting avenue for solving the angular momentum loss in SPMHD due
to the tension force could be by adding a spin property to the particles
(Menon et al., 2015). This spin parameter holds the information that is
otherwise lost by the orthogonal forces. This spin can then effectively
"reintroduce" the angular momentum to the surrounding gas

Super-Lagrangian SPH :

SPH is a Lagrangian numerical method that naturally adapts its res-
olution with density, making high-density regions more resolved than
low-density regions. While this is in the majority of cases what we want,
there are circumstances/regions in which we would like to have higher
resolution despite the density. One such case is for example in the CGM
wherein the majority of galaxy simulations the CGM is only very coarsely
resolved, which means the small-scale structure cannot be properly resolved
(Hummels, 2018). This of course also means that dynamo-processes within
the CGM in these simulations are severely suppressed.

Super-Lagrangian refinement in SPH is on the surface very simple,
as particles can be split and merged to either generate more or fewer
resolution elements. However, the accuracy of SPH can be highly degraded
if the neighboring particles around it are of vastly different mass. So the
tricky part of implementing super-Lagrangian refinement in SPH comes
down to assuring that different regions of the simulation only contain
particles of a certain mass. By implementing a transition region together
with splitting and merging procedures, I believe that super-Lagrangian
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refinement can be implemented in a nice way in SPH. Potentially these
transition regions can take advantage of Voronoi tessellation for the
merging and splitting (not the hydrodynamics), in which there already
exist methods for (Springel, 2010).

Magnetic field amplification in local galactic environments :

The final paper highlights the numerical dependencies in global galaxy
simulations using SPH. However, disentangling the different turbulent
drivers and their resolution dependencies proves to be a difficult task.
To get a better understanding of the dynamo processes induced by the
supernova feedback I will in future work simulate local simulations boxes
looking at the structure of the resulting turbulence and the magnetic
field. Determining the effective turbulent driving length and a mixture of
solenoidal-compressive modes and their dependencies on resolution. This
will in addition be done in both non-stratified and stratified boxes and
with and without shear to determine the effect of different environments
in the galactic disk. In addition, high resolution/super-Lagrangian could
be used to investigate the turbulent driving of outflow-driven gas on the
CGM using local simulation boxes.
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ABSTRACT

We present a novel method of magnetohydrodynamics (MHD) within the smoothed particle hydrodynamics scheme (SPMHD) using
the geometric density average force expression. Geometric density average within smoothed particle hydrodynamics (GDSPH) has
recently been shown to reduce the leading order errors and greatly improve the accuracy near density discontinuities, eliminating
surface tension effects. Here, we extend the study to investigate how SPMHD benefits from this method. We implement ideal MHD
in the Gasoline2 and Changa codes with both GDSPH and traditional smoothed particle hydrodynamics (TSPH) schemes. A con-
strained hyperbolic divergence cleaning scheme was employed to control the divergence error and a switch for artificial resistivity
with minimized dissipation was also used. We tested the codes with a large suite of MHD tests and showed that in all problems,
the results are comparable or improved over previous SPMHD implementations. While both GDSPH and TSPH perform well with
relatively smooth or highly supersonic flows, GDSPH shows significant improvements in the presence of strong discontinuities and
large dynamic scales. In particular, when applied to the astrophysical problem of the collapse of a magnetized cloud, GDSPH real-
istically captures the development of a magnetic tower and jet launching in the weak-field regime, while exhibiting fast convergence
with resolution, whereas TSPH failed to do so. Our new method shows qualitatively similar results to those of the meshless finite
mass/volume schemes within the Gizmo code, while remaining computationally less expensive.

Key words. methods: numerical – ISM: magnetic fields – magnetohydrodynamics (MHD)

1. Introduction

Magnetic fields are important in a wide array of different astro-
physical systems. In star formation, they govern the dynam-
ics at several stages during collapse. They are critical in the
launching of jets from a broad range of sources. They also
play a major role in the transport of angular momentum in ion-
ized accretion disks due to the magnetorotational instability.
Magnetic fields have been largely neglected in galaxy forma-
tion simulations, mostly due to the technical difficulties asso-
ciated with them. It is only recently that researchers have
begun to apply them (Wang & Abel 2009; Kotarba et al. 2011;
Pakmor & Springel 2013; Rieder & Teyssier 2016; Butsky et al.
2017; Su et al. 2017; Pakmor et al. 2017; Steinwandel et al.
2019). The importance of magnetic fields in galaxy forma-
tion is clear from observations of the Milky Way and nearby
galaxies, which reveal that the magnetic energy is in equipar-
tition with the thermal and turbulent energies (Boulares & Cox
1990; Beck et al. 1996). This means that they are likely to
have a large dynamical effect on the evolution of the galaxy,
adding significant non-thermal pressure that can suppress star-
formation (Pakmor & Springel 2013). In addition, it has been
shown that magnetic fields have a strong impact on fluid insta-
bilities (Jun et al. 1995; McCourt et al. 2015), which may affect
how gas in the intergalactic medium (IGM) accretes onto galax-
ies and how gas in galactic outflows leaves (or cycles back to)
galaxies. The strength and structure of magnetic fields in galax-
ies also determine the transport of cosmic rays (CRs), which has
recently emerged as a promising candidate for driving galactic
outflows because they have long cooling time scales (Uhlig et al.

2012; Booth et al. 2013; Pakmor et al. 2016; Butsky & Quinn
2018).

Apart from the improvements in the general method,
advances have been made in the magnetohydrodynamics exten-
sion for smoothed particle hydrodynamics (SPMHD). The mod-
ern foundation of SPMHD comes largely from the work of
Price & Monaghan (2004) which was built on the earlier work
of Phillips & Monaghan (1985). The two main technical diffi-
culties to overcome for SPMHD, are the handling of divergence
errors and the choice of an artificial resistivity term to capture
shocks and discontinuities in the magnetic field.

Artificial dissipation terms are required to smooth out dis-
continuities in any fluid quantity in all numerical hydrody-
namics methods. In SPH, this is most commonly achieved
via explicit artificial dissipation. To avoid excessive dissipa-
tion away from shocks and discontinuities, switches have been
developed to limit where the artificial dissipation terms are
active. For magnetic fields, newly developed artificial resistiv-
ity switches (Price et al. 2018; Tricco & Price 2013) have sig-
nificantly reduced the amount of dissipation and improved the
method in the weak field regime.

Unphysical divergence errors (magnetic monopoles) can
arise from the discretization and numerical integration of the
MHD equations. Divergence errors in SPMHD for magnetic-
dominated scenarios need to be handled with care, as they
can produce a negative force between particles which leads
to the tensile instability (Monaghan 2000). As such, the force
produced from the divergence needs to be partly removed in
the strong field regime for the method to remain stable, this
breaks momentum and energy conservation in proportion to the
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divergence error. It is therefore crucial to try to keep the diver-
gence error as close to zero as possible. While grid codes have
access to the constrained transport scheme (Evans & Hawley
1988), which ensures a divergence free field up to machine
precision, it cannot easily be implemented within meshless
methods, due to the absence of regular spatial grid surfaces. Gen-
eration of divergence free fields in SPMHD have been explored
in detail, however, all of them suffer from problems. Generation
of magnetic fields from Euler potentials (B = ∇α × ∇β) can-
not wind the magnetic field and thereby not produce a dynamo
(Brandenburg 2010). Price (2010) showed that vector potential
implementations (B = ∇ × A) are plagued with numerical insta-
bilities. However, Stasyszyn & Elstner (2015) recently showed
that with additional diffusion, smoothing of the magnetic field,
and enforcing the Coulomb gauge (∇ · A = 0), the vector poten-
tial formalism could remain stable for a handful of test cases.
Additional testing would be required to determine the robust-
ness of the method. The most popular method to deal with diver-
gence error in meshless methods, is to evolve the magnetic field
via the induction equation and then to “clean” the divergence
away. In general, this is done by introducing a separate scalar
field which couples to the induction equation such that it pro-
duces a damped wave equation for the divergence error, so the
divergence is spread outward like a damped wave. The method
was first developed in Dedner et al. (2002) and was improved
by Tricco & Price (2012), who introduced a constrained ver-
sion of the method. This ascertains that the magnetic energy is
either conserved or dissipated. This was updated in Tricco et al.
(2016) to correctly allow variable cleaning speed, which further
improved the method.

These new improvements in artificial dissipation and diver-
gence error controlling have significantly increased the accu-
racy and convergence of the SPMHD method. There have
also been implementations of non-ideal MHD in SPMHD pro-
posed recently (Tsukamoto et al. 2013, 2015a,b; Wurster et al.
2014, 2016; Price et al. 2018), which include Ohmic resistivity,
ambipolar diffusion, and the Hall effect.

As mentioned previously, the numerical surface tension seen
in traditional SPH (TSPH) can be solved by using a different
gradient operator (GDSPH; Wadsley et al. 2017). This substan-
tially improves the accuracy of pressure forces across density
jumps and provides a more physical form for the internal energy
equation, where it represents a direct discretization of du

dt =

− P
ρ
∇ · v from the Euler equations while retaining all the usual

conservation properties. In Wadsley et al. (2017), the authors
show that GDSPH, together with an explicit turbulent diffusion
term on thermal energy, yields excellent results in fluid mix-
ing test cases, such as the Kelvin-Helmholtz instability and the
blob test.

In this paper, we investigate how SPMHD benefits from
the use of GDSPH. As such, we have implemented MHD
within the Gasoline2 (Wadsley et al. 2017) and Changa
(Menon et al. 2015) codes, which both utilize the GDSPH for-
malism. Gasoline2 is a highly parallel, state-of-the-art code
for cosmological structure formation simulations which includes
all the features of modern SPH methods. Changa includes
all the same SPH methods as Gasoline2, but it is written in
an inherently parallel language Charm++ (Kale & Krishnan
1993) which enables more efficient parallelization. The major
difference between the two codes lies in the gravity solver, which
is different in Changa because it uses an oct-tree, rather than an
arbitrary binary KD-tree as in Gasoline2.

This paper is organized as follows. In Sect. 2, we go through
the SPMHD theory and show how the equations can be formu-

lated using the GDSPH approach. In Sect. 3, we test our imple-
mentation on a large suite of standard test cases and in Sect. 4 we
apply the code to an astrophysical application: the collapse of a
magnetized cloud. In Sect. 5, we discuss our results and present
some concluding remarks.

2. Theory

In this section, we show how the MHD equations can be
formulated in a conservative way within the GDSPH frame-
work. The development is similar to the findings in previous
work (Price & Monaghan 2004; Price 2012; Tricco et al. 2016;
Price et al. 2018) and we direct the reader to these papers for
additional background details.

2.1. MHD theory

The two main equations which are relevant for ideal MHD are
the Lorentz force law and the induction equation. Assuming that
the fluid is an ideal conductor (E = 0), the Lorentz force law can
be written as:

dv
dt
=

1

μ0ρ
(∇ × B) × B =

1

μ0ρ

(
−1

2
∇B2 + (B · ∇)B

)
, (1)

where v, ρ, B and μ0 is the velocity, density, magnetic field and
vacuum permeability, respectively. The first term acts like an
isotropic magnetic pressure term, while the other term acts as
an attractive term along magnetic field lines (tension). Going
forward, we define code units such that μ0 = 1. The conser-
vative form of SPMHD is attained by using the stress tensor
to describe the momentum equation. Assuming that the mag-
netic field is divergence free, the MHD stress tensor can be
written as:

S i j = −δi j
(
P +

B2

2

)
+ BiBj, (2)

where P is the thermal pressure and δi j is the Kronecker delta.
The momentum equation can then be written as:

dv
dt
=
∇ · S
ρ
= −1

ρ
∇
(
P +

B2

2

)
+

1

ρ
[(B · ∇)B + B(∇ · B)] . (3)

There is an extra tension force term which would normally have
no effect due to the assumption ∇·B = 0. However, as mentioned
in the introduction, this constraint is usually not fully upheld in
numerical codes. To avoid numerical instability within SPH, this
term needs to be negated when the magnetic pressure exceeds
the thermal pressure.

The change in the magnetic field is obtained from the induc-
tion equation:

dB
dt
= ∇ × (v × B) = (B · ∇)v − B(∇ · v), (4)

where the first term affects the magnetic field through shearing
motion, while the second will increase the magnetic field when
undergoing compression. A combined effect of the two terms
is to enhance the field due to compression perpendicular to the
field direction (for example, B ∝ ρ2/3 for spherical collapse).
Compression in the direction of the field has no effect.
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2.2. SPH discretization

Derivatives within SPH can be discretized in a number of ways,
and a general formulation is given by Price (2012):

∇A
ρ
=
φ

ρ

[
A
φ2
∇φ + ∇

(
A
φ

)]
≈
∑

b

mb

ρaρb

(
Aa
φb

φa
+ Ab

φa

φb

)
∇aWab,

(5)

∇A
ρ
=

1

φρ

[∇(φA) − A∇φ] ≈∑
b

mb

ρaρb

φb

φa
(Ab − Aa)∇aWab, (6)

where φ can be any arbitrary, differentiable scalar quantity. The
geometric density average force formulation (GDSPH) corre-
sponds to using φ = 1 while traditional SPH corresponds to
using φ = ρ. GDSPH therefore gives the following symmetric
and anti-symmetric gradient operators:

∇A
ρ
≈ 1

ρ
(A∇1 + ∇A) =

∑
b

mb

ρaρb
(Aa + Ab)∇aWab, (7)

∇A
ρ
≈ 1

ρ
(∇A − A∇1) =

∑
b

mb

ρaρb
(Ab − Aa)∇aWab. (8)

Here, ∇aWab is a symmetric gradient of the smoothing
kernel:

∇aWab =
1

2

[
fa∇aW(rab, ha) + fb∇bW(rab, hb)

]
, (9)

where W is the smoothing kernel, ha is the smoothing length of
particle a, and rab = |ra − rb| is the distance between particle a
and b. Here, fa is a correction term introduced in Wadsley et al.
(2017) to ensure that internal energy and density evolve consis-
tently, such that entropy is tightly conserved. To attain a con-
servative formalism for SPH, the symmetric gradient operator is
applied to the equations of motion and the anti-symmetric gradi-
ent operator is applied to the internal energy equation1. As a con-
sequence, zeroth order errors arise in the equations of motions
which will depend on the local particle distribution2. A general-
ized error term for the zeroth order errors is given by:

E0 =
∑

b

mb

ρb

(
Φab + Φ

−1
ab

)
∇aWab, (10)

where Φ =
φa
φb

depend on the chosen scalar quantity φ in Eqs. (5)

and (6). As shown by Read et al. (2010), in TSPH Φab =
ρa
ρb

,

while in GDSPH Φab = 1. It is then evident that these errors
are more severe at density gradients in TSPH than in GDSPH
(where they are explicitly independent of the density gradient).
A similar improvement can be seen for the linear errors.

Applying the symmetric gradient operator to the momentum
equation (Eq. (3)) and the anti-symmetric gradient operator to
the induction equation (Eq. (4)) gives:

dvi
a

dt
=
∑

b

mb

ρaρb

(
S i j

a + S i j
b

)
∇ j

aWab + f i
divB,a , (11)

dBa

dt
=
∑

b

mb

ρb

[
Ba(vab · ∇aWab) − vab(Ba · ∇aWab)

]
, (12)

1 This can clearly be seen when deriving the SPH equations from the
least action principle (Price 2012).
2 This can be seen as an inherent re-meshing procedure, where the
particles try to arrange themselves to maximize the sum of the particle
volumes and reach a minimum energy state.

where vab = va − vb. The stability term f i
divB,a is added to avoid

the tensile instability. This can occur due to divergence errors

when the magnetic pressure exceeds the gas pressure ( B2

2
> P)

(Phillips & Monaghan 1985). The stability term is defined as:

f i
divB,a = −B̂i

a

∑
b

mb

ρaρb
(Ba + Bb) · ∇aWab. (13)

This basically removes the divergence term
(
−B
ρ
∇ · B

)
from

Eq. (3) (Børve et al. 2001; Price 2012). Removing a term from
the conservative momentum equation effectively breaks momen-
tum conservation. However, the error introduced will be propor-
tional to the divergence. To minimize its effect in the weak field
regime, we use the scheme from Børve et al. (2004) with a factor

of B̂i
a = Bi

a for β < 1 as advocated by Tricco & Price (2012):

B̂i
a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bi

a β < 1

Bi
a(2 − β) 1 < β < 2

0 otherwise,

(14)

where β = 2P
B2 is the plasma beta.

2.3. Treating discontinuities

When fluid quantities become discontinuous, they are no
longer differentiable, which is problematic as differentiability
is assumed by the SPMHD equations. Artificial resistivity is
required to smooth out discontinuities in the magnetic field
which can occur both along and orthogonal to the fluid motion
and in both compression and rarefaction. The artificial resistivity
can be represented as an isotropic diffusion:

dB
dtdiss

= η∇2B, (15)

where η is a resistivity parameter. We use the Brookshaw method
(Brookshaw 1985), which estimates the second derivative by
using the first derivative kernel and the difference in the field
divided by the particle spacing. Following the GDSPH dis-
cretization, we get:

dBa

dtdiss

=
∑

b

mb

ρb

(
ηa + ηb

|rab|
)

Bab

(
r̂ab · ∇aWab

)
, (16)

where Bab = Ba−Bb and r̂ab = rab/|rab|. To conserve energy, the
change in the internal energy becomes:

dua

dtdiss

= −1

2

∑
b

mb

ρaρb

(
ηa + ηb

|rab|
)

B2
ab

(
r̂ab · ∇aWab

)
. (17)

To reduce dissipation away from shocks, we can introduce a
varying and resolution dependent resistivity parameter:

η =
1

2
αBvsig,B|rab|, (18)

where αB is a dimensionless coefficient and vsig,B is the signal
speed. Proper choice of αB and vsig,B makes the artificial resistiv-

ity second order accurate away from shocks (η ∝ h2). We choose
to implement the resistivity from Phantom (Price et al. 2018)
where the signal speed is activated following:

vsig,B = |vab × r̂ab|. (19)

The dimensionless coefficient αB is set to a constant. In
Phantom, this coefficient is set to αB = 1, however, from our
tests we find that αB = 0.5 provides sufficient dissipation. This
switch was shown to be the least dissipative compared to previ-
ous switches, while still capturing the correct magnetic features
(Wurster et al. 2017).
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2.4. Divergence cleaning

As we discussed in the introduction, divergence errors are gen-
erated by the discretization and integration of the MHD equa-
tions. Apart from creating an unphysical magnetic field, it
also forces us to introduce a stability term (Eq. (13)), which
breaks momentum conservation in the strong field regime. This
makes it crucial to reduce the divergence errors as much as
possible. The best way found in SPMHD is by introducing a
divergence cleaning scheme (Tricco & Price 2012). In general,
this is done by introducing a separate scalar field which cou-
ples to the induction equation, such that it produces a damped
wave equation for the divergence error. That is, the divergence
is spread outward like a damped wave. In our implementa-
tion, we employ the constrained hyperbolic divergence cleaning
from Tricco et al. (2016), an improved version of the method
presented by Dedner et al. (2002). The constrained hyperbolic
divergence cleaning ensures that magnetic energy is either con-
served or dissipated. In this method, a scalar field ψ is coupled
to the induction equation as follows:(

dB
dt

)
ψ

= −∇ψ. (20)

The scalar field ψ evolves according to:

d

dt

(
ψ

ch

)
= −ch∇ · B − 1

τ

ψ

ch
− 1

2
ψ(∇ · v). (21)

where τ is the decay time and ch is the wave cleaning speed:

ch = fcleanvmhd, (22)

vmhd =

√
c2

s + v
2
A
, (23)

vA =

√
B2

ρ
. (24)

Here, cs is the speed of sound, vA the Alfvén velocity, and fclean

is an overcleaning factor. The fclean factor can be used to increase
the amount of divergence cleaning, however, this will reduce the
timestep3 according to Δt → Δt/ fclean. Combining the cleaning
equation with the induction equation produces a damped wave
equation for the divergence (this form assumes constant ch and
τ):

∂2(∇ · B)

∂t2
− c2

h∇2(∇ · B) +
1

τ

∂(∇ · B)

∂t
= 0, (25)

which effectively shows that the divergence is spread out and
damped. The decay time is given by:

τa =
ha

ch,aσc
. (26)

Here, σc is a dimensional constant, and was shown to be optimal
with a value of 1 in 3D. Following Tricco & Price (2012), ∇ψ is
discretized using the symmetric gradient operator (Eq. (7)) and
∇·B using the anti-symmetric gradient operator (Eq. (8)). Within
the GDSPH discretization, Eqs. (20) and (21) become:(

dB
dt

)
ψ,a
= −
∑

b

mb

ρb
(ψa + ψb)∇aWab, (27)

d

dt

(
ψ

ch

)
a
= ca

h

∑
b

mb

ρb
Bab · ∇aWab +

ψa

2ca
h

∑
b

mb

ρb
vab · ∇aWab − ψa

ca
hτa

.

(28)

3 This is a significant increase in computational cost, so it is in general
not recommended to use an fclean value above 1. But it does allows for
a simple way to reduce the divergence error, if that is required.

The divergence cleaning dissipates energy from the magnetic
field. However, this term is so small compared to the other dis-
sipation terms that it is not worth accounting for. We could, of
course, add this energy to heat and conserve energy, however,
as discussed by Tricco & Price (2012), the removal of magnetic
energy and subsequent generation of thermal energy would be
non-local due to the coupling of parabolic diffusion with hyper-
bolic transport. Due to this, we simply removed the energy.

To ensure that simulations are not affected by the divergence
error, we monitor the normalized divergence error:

εdivB =
h|∇ · B|
|B| . (29)

The mean of this quantity should preferably remain below 10−2.
However, regions of locally high divergence error can occur, so
careful inspection of the divergence error is required to ensure
the quality of simulations.

2.5. Shock capturing

To correctly capture shocks in MHD, we need to modify
the artificial viscosity term in the momentum equation (see
Wadsley et al. 2017 for a detailed description of the artifi-
cial viscosity term in Gasoline2). For MHD the sound speed
is replaced by the fast magnetosonic speed (Eq. (23)). We
also modify the gradient-based shock detector introduced in
Gasoline2, which determines the direction of the shock from
the pressure gradient. For the MHD, we must include the Lorentz
force to correctly determine the direction of the shock. A more
general way to determine the direction of the shock is to estimate
the acceleration of the MHD forces without the dissipation terms
before the actual force calculation:

n̂ = −
⎛⎜⎜⎜⎜⎜⎝ dv

dt∣∣∣ dv
dt

∣∣∣
⎞⎟⎟⎟⎟⎟⎠

no diss

. (30)

This addition improves the behavior of shock detection in con-
vergent flows for MHD. In Gasoline2, the diffusion of fluid
scalar variables such as thermal energy, metals and so forth are
modeled using subgrid turbulent mixing (Wadsley et al. 2008;
Shen et al. 2010). However, we found that in strong shocks like
the MHD blastwave, the thermal dissipation is not enough and
can lead to incorrect velocity profiles. As such, we add a thermal
shock dissipation similar to Eqs. (4.5) with (4.8) in Monaghan
(1992), however, we use cab = 0 and with a larger constant (fit-
ted parameter from the Gasoline2 code):

du
dtshock

= −
∑

b

mb

ρab
dshockuab

(
r̂ab · ∇aWab

)
|rab| , (31)

dshock = 16hab |μab|, (32)

μab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hab(vab·rab)

r2
ab+0.01h

2

ab

for vab · rab < 0,

0 otherwise.
(33)

3. Test problems

In this section, we present the results from our test cases. All
the simulations were run with the MHD version of Gasoline2.
To remain consistent and show the production quality of the
method, we decided to run all the tests in 3D and with a default
set of code parameters (described below). While glass-like ini-
tial conditions should always be used to correctly capture the
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natural state of 3D SPH simulations, for the sake of comparison,
we elected to follow the initial setups from other authors, which
often use lattice-based initial conditions. Test cases that are orig-
inally 1D or 2D are made 3D by extending the non-active dimen-
sions by a set number of particles. By default, Gasoline2 sets
the smoothing length based on a fixed number of neighbours.
However, we found that in very uniform and precise tests, as in
the circularized Alfvén wave test, this approach generates small
force errors that generate perturbations in the traveling wave. As
such, we made the smoothing length directly proportional to the
density and simultaneously determined the density and smooth-
ing length using an iterative summation (Springel & Hernquist
2002). We note, however, that in all other tests, no visible effect
was seen. We ran simulations with both TSPH and GDSPH, and
the only difference between them is the choice of φ in Eqs. (5)
and (6); all the other numerical schemes and parameters remain
the same. In many of these tests, we compare the results to
the state-of-the-art SPMHD code Phantom (Price et al. 2018),
and to the PSPH and the new meshless finite mass/volume
(MFM/MFV) method of the Gizmo code (Hopkins 2015). The
MFM/MFV method utilizes a Lagrangian Godunov type method
that employs more complex gradient operators and calculates
fluxes from Riemann solvers.

Default set of code parameters. For the smoothing kernel,
we used a Wendland C4 kernel (Wendland 1995) with 200 neigh-
bours4. Our artificial viscosity (AV) followed the prescription
given in Wadsley et al. (2017), the AV parameters were set to
αmax = 4, αmin = 0, τ = 0.1 h

c and β = 2. The artificial resis-
tivity (AR) followed from the method outlined in Sect. 2.2, and
the AR parameter was set to αB = 0.5. The thermal diffusion
followed the turbulent mixing model described in Wadsley et al.
(2008) and Shen et al. (2010), with the turbulent diffusion coef-
ficient set to C = 0.03.

3.1. Circularized polarized Alfvén wave

The circularized polarized Alfvén wave test was introduced by
Tóth (2000) to serve as an analytical solution to the ideal MHD
equations. Due to the waves being circularized, the gradient
in magnetic pressure is zero and the wave should remain the
same after each period. This proves to be a useful test for gaug-
ing the dissipation and dispersion of the MHD implementation.
This test is sensitive to the tensile instability (Price & Monaghan
2005), so it also serves as a good test to see if the stability
term (Eq. (13)) properly stabilizes the solution. The setup fol-
lows Gardiner & Stone (2008) and Price et al. (2018), in which
the waves are traveling at an angle of θ = 30◦ with respect
to the x axis, within a periodic box of length L = (l, l/2, l/2),
where l = 3. The transverse velocities and magnetic fields are
circularized:

B⊥,1 = v⊥,1 = 0.1 sin
(
2πx‖/λ

)
,

B⊥,2 = v⊥,2 = 0.1 cos
(
2πx‖/λ

)
,

while the parallel components are set to:

v‖ = 0 B‖ = 1.

Here, x‖ is the direction of propagation, and λ = 1 is the
wavelength. An adiabatic EOS (γ = 5/3) is used with uni-
form pressure P = 0.1 and density ρ = 1.0. The particles are

4 Choice of kernel and neighbour number discussed at the end of
Sect. 3.1.

Fig. 1. Results of the 3D circularly polarized Alfvén wave test. Top
panel: transverse component of the magnetic field in the direction of
propagation after five periods. The analytical/initial solution is plot-
ted in black, and the simulation results with resolution [nx, ny, nz] =
[128, 74, 78] in red, [nx, ny, nz] = [64, 36, 39] in green, and [nx, ny, nz] =
[32, 18, 18] in blue. Both of these are with Wendland C4 kernel with
200 neighbours. Bottom panel: convergence study for the Alfvén wave
test using different kernels and neighbour numbers. Shows how the L1

error scales with resolution (particles along the x-axis). The code default
(Wendland C4 kernel with 200 neighbours) is shown in green, Wend-
land C4 kernel with 114 neighbours are shown in magenta, Quintic ker-
nel with 114 neighbours are shown in blue and the dashed brown line
shows the curve for second order convergence. Convergence towards
the analytical solution for all kernels are close to second order. When
the smoothing length becomes comparable to half the wave length
of the Alfvén wave, the MHD gradients becomes more ill defined
which causes the slower convergence speed for the Wendland kernel

(Nneigh = 200) at low resolution.

set up on a close-packed lattice and the simulation is run for
five periods (t = 5). As we have uniform density, there are
no differences between GDSPH and TSPH in this test case.
We plot the transverse component of the magnetic field in the
direction of propagation, showing the results of different reso-
lutions [nx, ny, nz] = [128, 74, 78], [64, 36, 39], and [32, 18, 18]
in the upper panel of Fig. 1. From the results, we can see
that both the phase and amplitude converge towards the ana-
lytical solution as we increase resolution. For a more qualita-
tive look at the convergence, we perform a convergence study
for this test using different smoothing kernels and neighbour
numbers. In the lower panel of Fig. 1, we show the L1 error
norm for the transverse magnetic field at five different resolu-
tions (nx = 32, 48, 64, 96, 128), and as we can see all the kernels
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exhibits second-order convergence. The major outliner is at low
resolution for the Wendland C4 kernel with more neighbours.
This is caused by the larger smoothing length, which at low
resolution becomes comparable to half the wave length of the
Alfvén wave. This makes the MHD gradients more ill defined
which causes force errors that shows itself predominately as a
phase shift in the Alfvén wave as time goes by. The amplitude of
the wave is only weakly affected by this. From the bottom panel
in Fig. 1 we can also see that the Wendland kernel has slightly
lower convergence speed then the quintic kernel at higher res-
olution. Despite this result, we chose to go with the Wendland
kernel C4 with 200 neighbors as our code default for the forth-
coming tests. This is for several reasons. First, the quintic kernel
is susceptible to the pairing instability whereas the Wendland
kernels are not (Dehnen & Aly 2012). In addition, the Wend-
land kernels tend to make the particle distribution remain well
ordered in dynamical conditions, which improves the overall
accuracy of the method (Rosswog 2015). While the computa-
tional cost increases roughly linearly with increased neighbour
number, gravity is usually the more dominant cost in astrophys-
ical simulations, which means that the increase in cost is usually
not significant. In the end, the choice of kernel and neighbour
number will depend on the application at hand. However, for
simulations involving subsonic flows, a high neighbour number
has been shown to be preferred (as showcased by the Gresho-
Chan vortex test in Dehnen & Aly 2012 and Rosswog 2015).

3.2. Advection loop

The advecting current loop test was introduced by
Gardiner & Stone (2005, 2008), in which a weak magnetic
loop is advected by a constant velocity field. As the ratio
between the thermal pressure and magnetic pressure is massive
(β ≈ 106), the magnetic field is dynamically unimportant and
should simply be advected along the velocity field. This proves
to be one of the more difficult tests for grid-based code due to
intrinsic dissipation during advection. We followed the setup
from Gardiner & Stone (2008), Hopkins & Raives (2016) and
Price et al. (2018), and initialized a 3D thin periodic box with

length L = (2, 1, 2
√

6
nx

), velocity v = (2, 1, 0.1√
5
) and pressure

P = 1. The magnetic field inside the loop was determined from
the potential Az = A0(R0 − r), where A0 = 10−3,R0 = 0.3,
and r2 = x2 + y2. The face-centered magnetic fields are then

B0 = ∇ × Az =
A0

r (y,−x, 0) inside the loop and zero everywhere
else. We set up two initial conditions, one with a uniform
density ρ = 1 with resolution [nx, ny, nz] = [128, 74, 12] and
another with a density gradient (Δ ≡ ρin

ρout
= 2) between the inner

loop (ρin = 2) and outer medium (ρout = 1), with resolution
[nx, ny, nz] = [256, 148, 12]. The particles are set up on a
close-packed lattice and the loop is advected for twenty periods
with all the default dissipation and divergence cleaning terms
turned on. The results of the test can be seen in Figs 2 and 3.

From the figures, we can see that in the case with uniform
density the field loop is closely conserved, resulting in only
0.3% reduction in magnetic energy after twenty periods. This
is a significant improvement from the advection loop presented
in Price et al. (2018), which starts to degrade after five periods.
We have also tested this case using a quintic spline kernel, a
smaller number of neighbours and an αB = 1 for the AR similar
to Price et al. (2018), while a little more degradation can be seen,
the difference in magnetic energy is still small after twenty peri-
ods (1% instead of a 0.3% decrease in magnetic energy). With-
out any dissipation and divergence cleaning the advection loop

Fig. 2. Results from the advection loop test in 3D, showing a rendering
of |B| in units of the initial value |B0|. Top left panel: initial setup (same
rendering for nx = 128 and nx = 256, and top right: uniform density
case for GDSPH with resolution nx = 128 after twenty crossings t = 20.
We can see that the current loop is conserved almost perfectly even
with all the dissipation terms turned on. This shows an improvement
comparing to the SPMHD results in Phantom, where dissipation is
seen after five periods (Fig. 35 in Price et al. 2018), which plots the
current density. The bottom two panels show the cases with a density
gradient Δ ≡ ρin

ρout
= 2 between the inner loop and outer medium and

with resolution of nx = 256, after twenty crossings t = 20. The bottom
left panel shows the GDSPH case and the bottom right show the TSPH
case (nx = 256). Both show similar dissipation of the magnetic field to
the results from the MFM/MFV method in Gizmo (Hopkins & Raives
2016).

with uniform density can be sustained for thousands of periods,
as shown in Rosswog & Price (2007). This shows a significant
advantage for Lagrangian codes compared to Eulerian codes,
which suffer from resolution-dependent advection errors when
the configuration is not aligned to the grid. In the case of the den-
sity gradient, we can see that there is now a faster dissipation of
the magnetic energy. The sudden reduction in magnetic energy
is largely due to the reordering of the initial particle lattice near
the density contrast. Comparing to Hopkins & Raives (2016), we
can see that we have a similar reduction in magnetic energy as
in the results from the MFM/MFV method at t = 20. There is
a tiny difference (<1%) between GDSPH and TSPH, however,
this owes itself to the initial reordering, after that we can see
that the rate of change in the two discretizations are practically
the same. The averaged normalized divergence error, 〈εdivB〉, is
around 10−2 for both the Δ = 1 case and Δ = 2 case.

3.3. Brio-Wu shocktube

The Brio-Wu shocktube (Brio & Wu 1988) is an MHD extension
to the classic Sod shocktube test (the hydro setup is the same). It
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Fig. 3. Results from the advection loop test in 3D, showing the time
evolution of the magnetic field energy in units of the initial value.
After t = 20 our uniform case has dissipated about 0.3%, while the
cases with the density gradient Δ = 2 have dropped around 5%, which
is similar to the dissipation displayed by the MFM/MFV method in
Hopkins & Raives (2016). There is a tiny difference between GDSPH
and TSPH, but this owes itself to differences in the initial reordering.

tests how well the implementation can handle different MHD
shocks, rarefactions, and contact discontinuities. We followed
the setup from Hopkins & Raives (2016) and Price et al. (2018)
and initialized a 3D thin periodic box, with a total region of
[nx, ny, nz] = [1024, 24, 24] and an active region of [256, 24, 24]
particles on the left side xL = [−2, 0], and a total region of
[nx, ny, nz] = [512, 12, 12] and an active region of [128, 12, 12]
on the right side xR = [0, 2]. The left state was set to:

(ρL, PL, vx, vy, vz, Bx, By, Bz) = (1, 1, 0, 0, 0, 0.75, 1, 0),

and the right state was set to:

(ρR, PR, vx, vy, vz, Bx, By, Bz) = (0.125, 0.1, 0, 0, 0, 0.75,−1, 0).

The adiabatic index is set to γ = 2. We ran the simulation up to
t = 0.2 and the results can be seen in Fig. 4. The GDSPH and
TSPH results are shown with black and red dots, respectively,
and the analytical solution is shown in blue lines. Our results are
very similar to those from the Phantom code default case with
the same resolution (Fig. 30 in Price et al. 2018). However, there
is noticeable wall heating in the internal energy u in our test, due
to the conservative thermal dissipation term used in this work.
A more aggressive thermal dissipation can be added to smooth
out the wall heating, which improves the results in the density,
thermal and pressure profiles. However, this often leads to over
dissipation in cases involving gravitational fields and is thus not
a preferable choice. Divergence errors are kept low with a max-
imum value of ∼10−3 at the shock, and Bx remains close to con-
stant, which also indicates excellent divergence control. Varying
artificial resistivity parameter αB from αB = 0.5 to αB = 1 only
shows minimal differences, and as we can see from the results,
αB = 0.5 is sufficient to capture the magnetic field structure. We
also note that using constant artificial viscosity (AV) parameters
decreases post-shock oscillations and improves the results in the
velocity profile. From Fig. 4, we can see that there is very little
difference between GDSPH and TSPH in this test.

3.4. Orszag-Tang vortex

The Orszag-Tang vortex test was introduced by Orszag & Tang
(1979) and is a standard test of MHD schemes, as it involves

the development of super-sonic turbulence and the interaction of
the different MHD shocks. We set up a 3D thin periodic box

with L = (1.0, 1.0, 2
√

6
nx

) at varying resolutions ([nx, ny, nz] =

[128, 148, 12], [256, 296, 12] and [512, 590, 12]). The test con-
sists out of a velocity vortex:

[vx, vy, vz] = v0[− sin (2π(y − ymin)) , sin (2π(x − xmin)) , 0],

and a doubly periodic magnetic field:

[Bx, By, Bz] = B0[− sin (2π(y − ymin)) , sin (4π(x − xmin)) , 0],

where v0 = 1, B0 = 1/
√

4π, xmin = −0.5 and ymin = −0.5.
Setting the initial plasma beta β0 = 10/3, the initial Mach
number M = v0/cs = 1 and the adiabatic index γ = 5/3,
we get the initial pressure P0 = B2

0 β0/2 = 0.133 and density
ρ0 = γP0M0 = 0.221. We show the results of the different res-
olution runs in Fig. 5 after t = 0.5 (top row) and t = 1 (bottom
row). The test was run with both GDSPH and TSPH, however,
we found only very small differences between them, which is
why we only show the result from GDSPH. This can addition-
ally be seen in Fig. 6, which show the time evolution of the mag-
netic energy in all of our test cases. From the result at t = 0.5
we can see that we reproduce the shock structure well and cap-
ture the trapped dense filament in the centre of the domain for all
resolutions. With increasing resolution, the shock structure and
filament become more defined. At t = 1, a more turbulent flow
has developed. Our simulations capture most of the key features
and compare well with previous works (for example, Fig. 32 in
Price et al. 2018). However, it appears that our method is unable
to develop the central magnetic island, a feature that is supposed
to form when the current sheet in the center becomes unstable
and reconnects due to the tearing mode instability. This is the
case for most previous implementations of SPMHD, however, in
Wurster et al. (2017) the authors argue that with a less dissipa-
tive artificial resistivity switch the magnetic island can be repro-
duced, and this motivate them to use the signal speed vsig,B given
in Eq. (19).

We use the same switch but the problem remains. Neverthe-
less, if we compare our evolution of the magnetic energy (the
magenta curve in Fig. 6) to theirs (the grey curve) we can see
that our simulations are actually less dissipative, likely because
we use a smaller resistivity parameter αB = 0.5. Increasing αB
to 1 leads to more dissipation and brings the final energy closer
to the Phantom run. It is thus likely that the development of the
magnetic island also depends on the other dissipation terms such
as AV and artificial conductivity. The mean normalized diver-
gence error in the simulations are of the order 〈εdivB〉 = 10−3.5–
10−2.5, decreasing with higher resolution.

3.5. MHD rotor

The MHD rotor test was introduced by Balsara & Spicer (1999),
which tests the propagation of Alfvén waves generated by a
magnetized rotor. We followed the setup from Tóth (2000) and
Price et al. (2018), and initialized a 3D thin periodic box of L =
(1.0, 1.0, 2

√
6

nx
) at two resolutions, [nx, ny, nz] = [128, 148, 12] and

[256, 296, 12]. A rotating dense cylinder (ρ = 10) was initiated
with cylindrical radius R = 0.1, within a surrounding medium
(ρ = 1). The cylinder was put into rotation with an initial veloc-
ity of

v =
v0

rcyl

[−(y − y0), (x − x0), 0] rcyl < R,
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Fig. 4. Results from the Brio-Wu shocktube in 3D, with an initial left state (ρL, PL, vx, vy, vz, Bx, By, Bz) = (1, 1, 0, 0, 0, 0.75, 1, 0) and right state
(ρR, PR, vx, vy, vz, Bx, By, Bz) = (0.125, 0.1, 0, 0, 0, 0.75,−1, 0). The figure shows the active region of the shock after t = 0.2, which contains about
nx ≈ 300−400 particles across the x-direction. The blue line shows the reference solution and the black dots show the result from the GDSPH
simulation, while red dots show the result from the TSPH simulation. There are minimal differences between the GDSPH and TSPH result.

Fig. 5. Results from the Orszag-Tang vor-
tex in 3D done with GDSPH, which shows
rendered density slices (z = 0) at t = 0.5
(top) and t = 1 (bottom) for varying resolu-
tion [nx, ny, nz] = [128, 148, 12], [256, 296, 12]
and [512, 590, 12] (low to high from left to
right). The simulations capture well most of
the key features for all tested resolutions.
With increasing resolution the flows are more
defined and show increased complexity. There
are no significant differences between GDSPH
and TSPH in this case.

where rcyl =
√

x2 + y2 and v0 = 2. The initial pressure was set to
P = 1, with an adiabatic index of γ = 1.4. The initial magnetic

field was set to B = [5/
√

4, 0, 0]. The particles were set up on a
closed packed lattice and the simulation were run until t = 0.15.

The density contrast was unsmoothed, which means that there
will be some noise at the boundary initially, due to particle
reordering. The results of the simulations done with GDSPH and
TSPH can be seen in Fig. 7, which shows 30 contours and the
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Fig. 6. Evolution of the total magnetic energy in units of
the initial value for the 3D Orszag-Tang vortex test. We plot
the result from three different tested resolutions [nx, ny, nz] =
[128, 148, 12], [256, 296, 12], [512, 590, 12] done in GDSPH. We also
include a TSPH case with nx = 256 and the nx = 512 curve from
Wurster et al. (2017) for comparison sake. We can see that there are
no visible difference between the TSPH (purple curve) and GDSPH
(brown curve) cases. From the figure, it is also clear that the GDSPH
case of nx = 512 (magenta curve) is less dissipative than the simulation
from Wurster et al. (2017) (grey curve). Significant differences between
resolutions can be seen to occur at later times during the evolution.

rendering of the magnetic pressure, with limits taken to be the
same as in Tóth (2000) and Price et al. (2018). From the results,
we can see that the difference between GDSPH and TSPH is
generally small. However, we do find that in GDSPH there are
notable increases in magnetic pressure at the pressure maxima
compared to TSPH, which also seen in Hopkins & Raives (2016)
when the authors compared MFM with SPH (their Fig. 15). In
general, the key features of the test are captured by both meth-
ods. The mean normalized divergence errors in the simulations
are of the order 〈εdivB〉 = 10−4–10−3.

3.6. Magnetized blastwave

The magnetized blastwave was introduced by Balsara & Spicer
(1999) and Londrillo & Del Zanna (2000), in which a central
over-pressurized region expands preferentially along the mag-
netic fields lines. We followed the setup from Stone et al. (2008)
and Price et al. (2018), and initialized a 3D periodic box of
L = [1.0, 1.0, 1.0] with uniform density at a resolution of N =
2563. An inner region of radius R = 0.125 was over-pressurized
(Pin = 100) to 100 times the outer pressure, which was set to
Pout = 1. The adiabatic index of the gas is set to γ = 5/35. The
initial magnetic field was set to:

B = [10/
√

2, 0, 10/
√

2].

This sets the initial plasma beta to βin = 2 in the inner region
and βout = 0.02 in the outer region. The simulation was run for
t = 0.02 and the result can be seen in Fig. 8. The rendering and
limits in the figure were set to the same as the results presented in
Tóth (2000) and Price et al. (2018), so that they can be directly
compared. We can see that our results agree well with the previ-
ous authors, capturing the inner and outer structure of the blast
well. There are minimal differences between the GDSPH and

5 This is different from the choice in Price et al. (2018) (γ = 1.4), how-
ever, γ = 5/3 is more representative of gas in astrophysical applications

Fig. 7. Result from the magnetic rotor in 3D, which shows rendered
magnetic pressure slices (z = 0) at t = 0.15, for varying resolution
[nx, ny, nz] = [128, 148, 12] and [256, 296, 12] and for both GDSPH
and TSPH. The plot also shows 30 contours with limits taken to be
the same as Tóth (2000) and Price et al. (2018) (Pmag = [0, 2.642]) for a
more direct comparison. We can see that GDSPH develops a larger and
broader magnetic pressure peak compared to TSPH.

TSPH results. The mean normalized divergence error in the sim-
ulations are of the order 〈εdivB〉 = 10−5.

3.7. Kelvin-Helmholtz instability in MHD

Generation of the Kelvin-Helmholtz instability is crucial for
efficient mixing in hydrodynamical simulations. Here, we look
at the same problem but with a magnetic field applied paral-
lel to the flow. This has a stabilizing effect on the shear flow
due to the magnetic tension force. We followed the setup from
McNally et al. (2012), but extend it to 3D, making a thin peri-

odic box (L = [1.0, 1.0, 2
√

6
nx

]), with a resolution of [nx, ny, nz] =

[256, 296, 12]. We applied a uniform pressure of P = 5/2 with
an adiabatic index of γ = 5/3. The hot outer stream has a density
of ρout = 1 and velocity vout = [−0.5, 0, 0]. The cold inner stream
has a density of ρin = 2 and velocity vin = [0.5, 0, 0]. A uniform
magnetic field was added in the direction of the flow velocity
B = [0.1, 0, 0].

The results for TSPH and GDSPH at t = 1.6 and 3.2 can
be seen in Fig. 9. And in Fig. 10 we show the particle distri-
bution of the surface boundary at t = 3.2. The TSPH result
exhibits a very gloopy behaviour and shows a decreased growth
of the KH mode. A strong artificial surface tension effect can
clearly be seen between the hot and the cold phase in Fig. 10.
With GDSPH this effect is largely eliminated and the growth
rate improves significantly. This large improvement in GDSPH
lends itself mainly to the reduction of the leading order errors,
which we discussed in Sect. 2.2. Adding turbulent diffusion (that
is, with the code default parameters) further improves the result,
because it allows particles to effectively mix or reorder (as shown
clearly in the particle distribution near the boundary regions in
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Fig. 8. Result from the magnetized blast in 3D in the 2563 GDSPH run,
which shows rendered slices of different fluid quantities at t = 0.02.
To the top left we can see the density rendering, top right the kinetic
energy density, bottom left the thermal pressure and bottom right the
magnetic pressure. The limits are taken to be the same as Stone et al.
(2008) and Price et al. (2018) for a direct comparison: ρ = [0.19, 2.98],
Ekin = [0, 33.1], P = [1, 42.4] and Pmag = [25.2, 65.9].

Fig. 10), but the growth rate remains similar to the GDSPH-only
case. We note that the sharp contact discontinuities in the initial
condition are not smoothed, unlike in McNally et al. (2012). We
choose this because it represents an extreme situation for SPH
where the initial particle ordering is not optimal (that is, zeroth
order errors are relatively high), and we show that GDSPH per-
forms well even in this extreme case. We also ran the setup using
a smoothed contact discontinuity, and this is shown in the right-
most column in Fig. 9. The magnetic field effectively uncoils and
stretches the vortex, which is in good agreement to the results
shown in Hopkins & Raives (2016) with the same setup. Here
TSPH and GDSPH develop indistinguishably until later time,
where at the end only small differences can be seen. The mean
normalized divergence error in the simulations are of the order
of 〈εdivB〉 = 10−3.

4. Collapse of a magnetized cloud

In this Section, we apply our method to an astrophysical prob-
lem and consider the collapse of a magnetized cloud. In this type
of problem involving large dynamic scales, we see a substantial
difference between GDSPH and TSPH. A rotating magnetized
cloud is allowed to collapse under its own gravity. During the
collapse, the cloud is compressed over several orders of magni-
tude, testing how the magnetic field develops and interacts with
the gas during compression. The large-scale collapse is eventu-
ally halted by the formation of a pseudo-disk6, which then starts
to slowly contract via magnetic braking. The collapse continues

6 The disks formed in strong magnetic fields are primarily not sup-
ported by rotation, as magnetic braking quickly transfers angular
momentum outwards. A pseudo-disk is however formed, which struc-

Fig. 9. Result from the magnetic Kelvin-Helmholtz instability in 3D,
which shows rendered density slices (z = 0) at t = 1.6 (top) and
t = 3.2 (bottom), for TSPH without diffusion (left), GDSPH without dif-
fusion (middle left), GDSPH with diffusion (middle right) and GDSPH
with an initial smoothed contact discontinuity (right). The TSPH result
exhibits a very gloopy behaviour and shows decreased growth of the
KH mode. This is mainly due to the artificial surface tension effect (see
Fig. 10). GDSPH shows much better growth, the addition of diffusion
only slightly improves the growth rate. The main effect from the mag-
netic field can be seen in all cases, which uncoils and stretches the vor-
tex. The smoothed result closely resembles the MFM and grid result
from Hopkins & Raives (2016).

within the central region and as the first hydrostatic core starts to
form, the magnetic field is twisted until it eventually launches a
jet (Uchida & Shibata 1986; Lynden-Bell 1996; Ustyugova et al.
2000; Nakamura & Meier 2004). The formation and subsequent
evolution of the first hydrostatic core stalls the collapse and a
slow contraction phase begins. In this paper, we do not run the
simulations far beyond the time of jet launching. The two main
jet launching mechanisms are the magneto-centrifugal and the
magnetic pressure driven mechanism. With a global poloidal
magnetic field as in our model, both of these mechanisms play
an important role. The resulting magnetic field structure of the
jet consists of a poloidal dominated central core with a surround-
ing toroidal field which produces a strong current along the jet.
We refer to this magnetic field structure as the magnetic tower
throughout this paper. All these key aspects require the code to
have excellent angular momentum conservation, small numeri-
cal dissipation and maintain low divergence errors (∇ · B).

We followed the setup outlined in Hennebelle & Fromang
(2008) and Hopkins & Raives (2016) and set up a 3D periodic
box L = [0.15 pc, 0.15 pc, 0.15 pc]. A cloud was initiated with a
radius of Rc = 0.015 pc and a mass of 1 solar mass (Mc = 1 M�),
within a surrounding medium that has 360 times lower den-
sity than the cloud (ρout = Mc/(360Vc)). The cloud was put
in rotation with an orbital time of P = 4.7 × 105 yr, which
corresponds to a kinetic over potential energy ratio of about
EK/EP ≈ 0.045. This is a higher ratio compared to the peak
value of 0.02 from the observed distribution of rotation rates in
molecular clouds (EK/EP ∈ (0.002, 1.4)) (Goodman et al. 1993).
A constant magnetic field B0 was initialized in the direction of
the angular momentum vector ( ẑ), and we varied the strength
in accordance to different mass-to-flux ratios. The mass-to-flux

ture is a consequence of the anisotropy of the magnetic support against
the gravitational collapse. Due to our high initial rotation rate, we are
though more likely to retain a more rotationally supported disk com-
pared to other studies which apply a lower ratio.
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Fig. 10. Surface boundary between the high and low density region in the magnetic Kelvin-Helmholtz instability at t = 3.2. The effect of the
numerical surface tension can clearly be seen in the TSPH case, while GDSPH does not suffer from this issue. Adding thermal diffusion allows
for local mixing between the cold and hot phase.

ratio μ is relative to the critical mass-to-flux ratio, (Mc/Φ)crit, in
which the cloud is fully supported by magnetic forces against
gravity, that is,

μ =
(Mc

Φ

) /(Mc

Φ

)
crit
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πR2
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3π

√
5

G
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Here, c1 = 0.53 is a parameter that can be determined numer-
ically (Mouschovias & Spitzer 1976). We then get the corre-
sponding initial magnetic field:

B0 =
610

μ
[μG]. (36)

The thermal pressure is determined by the following barotropic
EOS,

P = c2
s,0ρ

√
1 + (ρ/ρ0)4/3, (37)

with ρ0 = 10−14 g cm−3 and cs,0 = 0.2 km s−1. We looked
at six different magnetic flux ratio values in our simulations,
from weak to high (μ = ∞, 75, 20, 10, 5, 2). These were run
with a moderate resolution of 503 in the cloud, which corre-
sponds to about 403 particles in the low density medium, same
as in the setup of Hopkins & Raives (2016). These six cases
were run with both GDSPH and TSPH until the core has fully
collapsed, close after the time of jet launching, which typi-
cally occurs when the maximum density hits a value in between
ρ = 10−12 ↔ 10−11 g cm−3. This occurs near the free fall time

t f f =
√

3
2πGρ ≈ 4 × 104 yr, at around t = 1.05t f f ↔ 1.3t f f

depending on resolution/initial magnetic field strength. No sink
particles were used in any of our simulations. The results of these
simulations can be seen in Fig. 11 (GDSPH) and Fig. 12 (TSPH).

The pure hydrodynamic runs (μ = ∞) of both GDSPH and
TSPH become gravitationally unstable and the resulting evo-
lution is very similar (see Figs. 11 and 12). For GDSPH, we
see in Fig. 11 that jet launching can be seen in the weak field
regime (μ = 75, 20, 10), although it is very short-lived in the
case of μ = 75. It is clear from the poloidal magnetic field and
the current density (the fourth and fifth row in Fig. 11) that we
have a developed magnetic tower in all these three cases. This
is a remarkable achievement, especially for SPMHD, since the

amplification of the magnetic field can easily be quenched by
numerical dissipation. The jet strength, morphology and veloc-
ity structure resemble those in Hopkins & Raives (2016) with
the same resolution using the MFM/MFV method with more
complex gradient operators and Riemann solvers. In contrast,
for TSPH (Fig. 14) we see neither jet launching nor a mag-
netic tower in the weak-field regime with the fiducial resolution
of 503. This is largely due to numerical dissipation which sup-
presses field amplification and hinders the formation of a jet. At
the time of jet launching, fragmentation of the disc occurs in the
two weakest cases μ = 75 and μ = 20 for TSPH, as the mag-
netic field is too weak to support the disc. For GDSPH, it does
not occur until a later time in the simulation, however, the exact
time of fragmentation is heavily dependent on other dissipation
terms such as artificial viscosity.

For the more magnetized case with μ = 5 we can see that
TSPH successfully develops a jet, however, closer inspection
on |Bz| in Fig. 12 shows that the central portion of the mag-
netic tower is much less developed, with an order of magnitude
smaller strength than the same run with GDSPH. Jet launching
is also seen in the GDSPH case with μ = 5 with the magnetic
tower intact, albeit weaker and less collimated than in the μ = 10
case. For μ = 2, the collapse proceeds differently in GDSPH and
TSPH from an early stage. This can be seen in Fig. 15, which
shows the density structure of the collapsing cloud in an early
stage with different resolutions. As the magnetic field is very
strong, accretion will occur primarily along the field lines, creat-
ing an elongated cloud structure. While at high resolution (2503)
both GDSPH and TSPH runs converge to the correct structure,
at the fiducial resolution of 503, only GDSPH shows an elon-
gated cloud. The cloud collapses faster in TSPH, likely due to
excessive dissipation.

For μ = 2, we can see that GDSPH does not produce a coher-
ent jet (Fig. 11). This is mainly due to the disk being disrupted by
the magnetic interchange instability. This instability occurs due
to an accumulation of magnetic flux near the accreting protostar,
where the magnetic flux that would have been dragged into the
protostellar core is redistributed to the surrounding medium by
dissipative effects (AR). This builds a large magnetic pressure
gradient which, together with the twisted magnetic field, eventu-
ally launches highly magnetized bubbles in the azimuthal direc-
tion. A density rendering together with a velocity map of the
μ = 2 case after the launch of the magnetized bubbles is shown in
Fig. 16. This is similar to the results seen in simulations using the
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Fig. 11. Result of the magnetized cloud collapse for GDSPH at a resolution of 503 particles with varying magnetic flux ratio μ going left to right
from high to low. We show figures at the time of jet formation (around t = t f f ), which occurs due to the winding of the magnetic field during
the collapse, which produces a magnetic tower structure. The top row shows a rendered face-on slice (Lxy = [2000 AU, 2000 AU]) of the density
[g cm−3], the rest of the rows show rendered slices through the rotation axis (Lxz = [2000 AU, 2000 AU]), where the second shows density [g cm−3],
the third show radial velocity [km s−1], the fourth show the absolute poloidal magnetic field [μG] and the fifth shows the current density [A m−2],
all quantities are shown in logarithmic scale. The pure hydrodynamic run (μ = ∞) of GDSPH becomes gravitationally unstable and is very similar
to that of TSPH in Fig. 12. We can see that a jet is launched in the cases of μ = 75, 20, 10, 5 while in the case of μ = 2 the interchange instability
(see Fig. 16) disrupts the disk before jet launching.
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Fig. 12. Result of the magnetized cloud collapse for TSPH at a resolution of 503 particles with varying magnetic flux ratio μ going left to right from
high to low. We show figures at the time of jet formation (around t = t f f ), which occur due to the winding of the magnetic field during collapse,
which produces a magnetic tower structure. The top row shows a rendered face-on slice (Lxy = [2000 AU, 2000 AU]) of the density [g cm−3],
the rest of the rows show rendered slices through the rotation axis (Lxz = [2000 AU, 2000 AU]), where the second shows density [g cm−3], the
third show radial velocity [km s−1], the fourth show the absolute poloidal magnetic field [μG] and the fifth shows the current density [A m−2], all
quantities are shown in logarithmic scale. The pure hydrodynamic run (μ = ∞) of TSPH becomes gravitationally unstable and is very similar
to that of GDSPH in Fig. 11. We can see that TSPH does not form a jet in any of the weak field cases (μ = 75, 20, 10) and there is no sign of
a magnetic tower being formed. In the case of μ = 5, we can see a jet being launched, where a current dominated magnetic tower has formed,
however, the central part of the tower has been completely quenched. The μ = 2 case also launches a jet, but collapses faster than in the high
resolution case, which effectively leads to easier jet formation.
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Fig. 13. Result of the resolution study of the magnetized cloud collapse for GDSPH with μ = 10. We vary the resolution from left to right,
in the initial cloud (123, 253, 503, 1003, 2503) and medium (103, 203, 403, 803, 2003).We show figures at the time of jet formation (around t =
t f f ), which occur due to the winding of the magnetic field during collapse, which produces a magnetic tower structure. The top row shows
a rendered face-on slice (Lxy = [2000 AU, 2000 AU]) of the density [g cm−3], the rest of the rows show rendered slices through the rotation
axis (Lxz = [2000 AU, 2000 AU]), where the second shows density [g cm−3], the third show radial velocity [km s], the fourth show the absolute
poloidal magnetic field [μG] and the fifth shows the current density [A m−2]; all quantities are shown in logarithmic scale. Jet formation and a
proper magnetic tower can be seen to occur at very low resolution compared to TSPH. The jet structure and magnetic tower further increases in
complexity as we increase the resolution.
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Fig. 14. Result of the resolution study of the magnetized cloud collapse for TSPH with μ = 10. We vary the resolution from left to right, in the initial
cloud (123, 253, 503, 1003, 2503) and medium (103, 203, 403, 803, 2003). We show figures at the time of jet formation (around t = t f f ), which occur
due to the winding of the magnetic field during collapse, which produces a magnetic tower structure. The top row shows a rendered face-on slice
(Lxy = [2000 AU, 2000 AU]) of the density [g cm−3], the rest of the rows show rendered slices through the rotation axis (Lxz = [2000 AU, 2000 AU]),
where the second shows density [g cm−3], the third show radial velocity [km s−1], the fourth show the absolute poloidal magnetic field [μG] and
the fifth shows the current density [A m−2], all quantities are shown in logarithmic scale. We can see that TSPH only forms a collimated jet and a
proper magnetic tower at the highest resolution.
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Fig. 15. Density rendered slice ([g cm−3]) through the rotation axis,
showing the early cloud structure of the strong field case μ = 2 before
the formation of the disk. As the magnetic field is very strong, accretion
will occur primarily along the field lines, creating an elongated cloud
structure. Both high resolution cases (2503) of TSPH and GDSPH cre-
ates an elongated cloud structure, while in the low-resolution case (503)
only GDSPH forms the same cloud structure. TSPH instead forms a
more compact central cloud, which as a consequence collapses faster
than the GDSPH case and the high resolution cases.

AMR code Enzo (Krasnopolsky et al. 2012) and in SPH simu-
lations with Phantom (Wurster et al. 2017). We would like to
stress that, unlike the SPH runs in Hopkins & Raives (2016), the
disk disruption is not due to divergence errors, but instead a con-
sequence of the magnetic dissipation. At later times (for exam-
ple, right panel of Fig. 16), we can see that the protostellar core
remains centrally located, which indicates good divergence con-
trol and angular momentum conservation. As the formation of
the interchange instability is driven by the redistribution of mag-
netic flux, it can depend heavily on the choice of AR prescrip-
tion and the use of sink particles. Wurster et al. (2017) observed
similar magnetic bubbles with the same AR prescription as ours,
while other tested AR prescriptions did not launch magnetic bub-
bles. However, all other works that produce interchange insta-
bilities use sink particles, which can artificially redistribute the
flux as matter is accreted by the sink, while leaving the magnetic
field close to the sink intact. The development of the interchange
instability in our simulations without sink particles might indi-
cate a more physical origin of the effect. Additional work will
need to be done to determine if this is in fact a real effect or a
consequence of the numerical scheme.

To investigate the convergence with resolution, we simulated
the μ = 10 case across different resolutions (123, 253, 503, 1003

and 2503) for both methods. The results are shown in Fig. 13
for GDSPH and Fig. 14 for TSPH. In GDSPH, resolved jet
structures and fully developed magnetic towers are already evi-
dent in cases with 253 resolution, and which increase in com-
plexity as we increase the resolution. A weak outflow appears
even in the lowest resolution of 123. In contrast, the runs with
TSPH shows slow convergence. The structure of the magnetic
field is severely distorted, and magnetic tower and proper colli-

Fig. 16. Magnetic interchange instability in the strong field case (μ = 2)
for the GDSPH simulation with 503 resolution. Left panel: zoom-in of
the disc structure seen face-on in Fig. 11 and right panel: same region
at a later time. The white arrows show the direction of velocity and
the colour scale indicates density. The instability launches magnetized
bubbles in the azimuthal direction. At later times we can see that the
central star starts to accrete again along the filamentary structure. These
figures can be compared to the results from Krasnopolsky et al. (2012).

mated jet are not developed in all cases except the highest reso-
lution. Again, we note that our GDSPH results are very compa-
rable to the MFM/MFV runs in Hopkins & Raives (2016), both
in terms of jet properties and converging speed. The magnetic
tower structure is also qualitatively similar to the cloud col-
lapse simulation in the weak field regime from the moving-mesh
code Arepo (Pakmor et al. 2011), although with a slightly dif-
ferent initial setup. We should note that the collapse of the 123

is artificially suppressed and contract much slower then what is
expected. This is because the local Jeans mass is not fully resolv-
able in these simulations. Bate & Burkert (1997) estimated that
around 3 × 104 particles where required to correctly resolve the
Jeans mass in similar collapse cases7. The effect can partly be

seen in the 253 case as well, especially at later times. However,
in this case, the cloud collapsing has a similar evolution up to the
time of jet-launching as the higher resolution cases.

5. Discussion

In this paper, we present an SPMHD method, which utilizes
the Geometric Density average force discretization (GDSPH)
of the MHD equations. GDSPH has been shown in previous

work to greatly improve the accuracy near density discontinu-
ities and eliminate the surface tension problem. We show that
MHD also benefits from this method. For a large part, the stan-

dard test problems (Sects. 3.1–3.6) both GDSPH and TSPH han-
dle the problems very well, and the differences between the
two methods are minimal. However, when the problem involves
mixing such as in the case of Kevin-Helmholtz instabilities,
GDSPH shows clear advantages. This is somewhat expected,
and in agreement with earlier studies without magnetic fields
(Wadsley et al. 2017). However, when we apply the method in
the astrophysical test of a collapsing magnetized cloud, we see
that GDSPH leads to a significant improvement. GDSPH not
only realistically captures the development of a magnetic tower
and jet launching in the weak field regime (μ � 10), but also
exhibits a fast improvement in the complexity and structure of
the jet with increased resolution. In contrast, TSPH only man-
ages to launch jets in the strong field regime with a resolution

7 The number of particles required to resolve the Jeans mass is pre-

sumably even higher in our simulation as Bate & Burkert (1997) used a
smaller neighbour number (Nneigh = 50) and neglected magnetic fields.
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Fig. 17. Normalized divergence error (εdivB ≡ h|∇·B|/|B|, Eq. (29)) of the different cases (all in 3D) with GDSPH. From left to right: first: advection
of a current loop with a density ratio of Δ = 2 at t = 20 (Sect. 3.2), second: MHD rotor (nx = 256) at t = 0.15 (Sect. 3.5). Third: Orszag-Tang
vortex (nx = 256) at t = 0.5 (Sect. 3.4). The MHD blastwave (n = 2563) at t = 0.02 (Sect. 3.5). The MHD Kelvin-Helmholtz instability (nx = 256)
with an initial sharp contact discontinuity at t = 3.2 (Sect. 3.7).

of 503 and only develop a collimated jet in the highest resolu-
tion runs of the μ = 10 case. We also show that, in the strong
field regime, GDSPH converges better than TSPH in accretion
time and in the outer cloud structure. The results of TSPH is in
agreement with previous studies using TSPH (Hopkins & Raives
2016; Bürzle et al. 2011) which used the same IC as this work,
and other studies (Price & Bate 2007; Price et al. 2012) which
employ a smaller initial cloud rotation (EK/EP = 0.005).

Overall, our new method shows improved or compara-
ble results to previous SPMHD implementations such as in
Phantom (Price et al. 2018) and in Gizmo (Hopkins & Raives
2016). In many test cases and particularly in the cloud collapse
case, GDSPH produces qualitatively very similar result to that of
the MFM/MFV method and achieves similar convergence speed.
It is worth noting that all the simulations are run in 3D with the
code default parameters listed in Sect. 3 without any adjustment
by hand to specific problems. The success of GDSPH can most
likely be attributed to the reduction of SPH “E0 errors” (Eq. (10))
and linear errors by the geometric density average force formula-
tion. As discussed in Sect. 2.2, the advantage of such discretiza-
tion is more evident when the density gradient is large, such as
in the cloud collapse case.

Using the constrained hyperbolic divergence cleaning
scheme with variable cleaning speed from Tricco et al. (2016),
we can keep the divergence error low in all cases. The mean
normalized divergence error, 〈εdivB〉 = 〈h|∇ · B|/|B|〉, is typically
of order 10−5−10−3. In Fig. 17, we show the normalized diver-
gence error maps for several test problems. Again we see that
the divergence cleaning works extremely well here, the max-
imum error is generally around 10−2. Comparing to Hopkins
(2016, their Fig. 4), we find that the errors are smaller than their
MFM simulations with the Dedner et al. (2002) cleaning in gen-
eral, with an exception for the outskirt of the advection loop
(where the magnetic field is essentially zero and thus not impor-
tant for the result). The improvement is probably due to the more
advanced constrained cleaning method (Tricco et al. 2016). The
normalized divergence error for the μ = 10 cloud-collapse case
at the jet launching time is shown in Fig. 18. Here, the diver-
gence cleaning still performs very well in the disc, along the
jets and for the majority of the regions where the outflow inter-
acts with the ambient gas, especially when the divergence error
is compared to the total gas pressure (right panel). The result
is similar to the Dedner cleaning in Hopkins (2016), although

Fig. 18. Normalized divergence error of the magnetized cloud collapse
simulation with GDSPH at the jet launching time, t ≈ t f f . The mass-to-
flux ratio is μ = 10 and the resolution is 1003. Left: normalized diver-
gence error as in (Eq. (29)), εdivB ≡ h|∇ · B|/|B|; right: divergence error

normalized to total gas pressure, εdivB/
√

(1 + β) = h|∇ ·B|/
√

(B2 + 2P),

where β = 2P/B2 is the plasma beta.

our error is somewhat larger at the tip of the jets where the
gas is shocked. However, we note that the comparison is not

direct in this case as the jets may develop differently. Over-
all, the result from cleaning is still worse than the constrained

transport or constrained gradient schemes (Hopkins 2016). For
SPMHD, as shown in Tricco & Price (2012), divergence errors

can be reduced to machine precision (or more practically to
a certain tolerance value) using cleaning, with the help of a

sub-cycling routine. However, local adjustments are required to
determine the number of iterations for each particle to efficiently

subcycle the cleaning in the simulation. This is because certain
regions are more affected than others and because divergence

is spread to nearby neighbours. Conceivably, if vector poten-
tials (Stasyszyn & Elstner 2015) could work for a wider range of
problems this could be an interesting avenue as well. However,

the exploration of these methods in detail is beyond the scope of
this work.
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From the tests, we can see that using a lower artificial resis-
tivity coefficient (αB = 0.5) than (αB = 1) (Price et al. 2018)
works well for all cases. However, the choice of artificial resistiv-
ity switch still remains somewhat ad-hoc as it is difficult to accu-
rately detect the MHD discontinuity. A Godunov SPH scheme
(Iwasaki & Inutsuka 2011) solves this problem by replacing arti-
ficial resistivity with Riemann solvers, which have been shown
to produce minimal artificial diffusivity. However, this brings
with it an increase in computational cost and it is unclear if
the extra cost is worth it. Further improvements in the conver-
gence of SPMHD may be found in the use of integral-based
gradient estimates, which have been shown to be more accu-
rate and less noisy than the standard SPH gradient estimate
(García-Senz et al. 2012; Rosswog 2015; Cabezón et al. 2017).
This could be especially beneficial for modeling subsonic turbu-
lent flows (Valdarnini 2016). This gradient estimate can easily be
implemented within the GDSPH framework and will be investi-
gated in future work.

Meshless methods (SPH and MFM) were recently explored
in local 3D simulations of the magnetorotational instability
(MRI; Deng et al. 2019). The authors found that in the vertically
stratified MRI simulations, SPH developed an unphysical state
with strong toroidal field components and no sustained turbu-
lence. In a forthcoming paper (Wissing et al., in prep.) we will
show that GDSPH do not show this unphysical behavior and
that they reproduce the characteristic periodic azimuthal mag-
netic field pattern (butterfly diagram) of the stratified MRI.
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ABSTRACT

The magnetorotational instability (MRI) is an important process in driving turbulence in sufficiently ionized accretion disks. It has
been extensively studied using simulations with Eulerian grid codes, but remains fairly unexplored for meshless codes. Here, we
present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method with the geometric
density average force expression. We performed 37 shearing box simulations with different initial setups and a wide range of res-
olution and dissipation parameters. We show, for the first time, that MRI with sustained turbulence can be simulated successfully
with smoothed-particle hydrodynamics (SPH), with results consistent with prior work with grid-based codes, including saturation
properties such as magnetic and kinetic energies and their respective stresses. In particular, for the stratified boxes, our simulations
reproduce the characteristic “butterfly” diagram of the MRI dynamo with saturated turbulence for at least 100 orbits. On the contrary,
traditional SPH simulations suffer from runaway growth and develop unphysically large azimuthal fields, similar to the results from
a recent study with meshless methods. We investigated the dependency of MRI turbulence on the numerical Prandtl number (Pm) in
SPH, focusing on the unstratified, zero net-flux case. We found that turbulence can only be sustained with a Prandtl number larger than
∼2.5, similar to the critical values for the physical Prandtl number found in grid-code simulations. However, unlike grid-based codes,
the numerical Prandtl number in SPH increases with resolution, and for a fixed Prandtl number, the resulting magnetic energy and
stresses are independent of resolution. Mean-field analyses were performed on all simulations, and the resulting transport coefficients
indicate no α-effect in the unstratified cases, but an active αω dynamo and a diamagnetic pumping effect in the stratified medium,
which are generally in agreement with previous studies. There is no clear indication of a shear-current dynamo in our simulation,
which is likely to be responsible for a weaker mean-field growth in the tall, unstratified, zero net-flux simulation.

Key words. methods: numerical – ISM: magnetic fields – magnetohydrodynamics (MHD)

1. Introduction

A popular mechanism for the generation of turbulence
within accretion disks is the magnetorotational instability
(MRI; Velikhov 1959; Chandrasekhar 1960; Fricke 1969;
Balbus & Hawley 1991), which is a local linear instability that
occurs for magnetic fields in Keplerian-like flows (e.g., accre-
tion disks). The ensuing turbulence subsequently acts as a driver
for angular momentum transport within the disk, allowing effi-
cient mass accretion onto the central object (Shakura & Sunyaev
1973; Lynden-Bell & Pringle 1974). Due to its simple prerequi-
sites of “activating” the instability (negative angular momentum
gradient, weak magnetic field, and sufficiently ionized gas), the
MRI is potentially a crucial component in many different astro-
physical systems.

While the linear behavior of the MRI is well estab-
lished (Balbus & Hawley 1991, 1992; Curry et al. 1994;
Goodman & Xu 1994; Kersalé et al. 2004), the nonlinear phase
is an active area of research. Modeling the full nonlinear
behavior of the MRI requires numerical simulations, which
for the past few decades have been readily applied to study
the MRI in both global (Penna et al. 2010; Hawley et al. 2011,
2013; Parkin & Bicknell 2013; Deng et al. 2020) and local
(Hawley et al. 1995) setups. While global simulations allow the
inclusion of global properties such as winds, jets, and accre-

tion, they require extensive computational resources to properly
resolve the MRI growth rates. Sano et al. (2004) found that a
minimum of six grid zones per MRI wavelength (λMRI) was
required to model the linear phase. This criterion was further
extended to the nonlinear regime by Noble et al. (2010), where
an effective quality parameter (Q) was used to gauge the reso-
lution requirement for correct MRI behavior. On the other hand,
local setups allow higher resolution and remain simple and well-
posed for investigating the nonlinearity and saturation of the
MRI under specific initial conditions. In general, local setups
apply a shearing box approximation (Goldreich & Lynden-Bell
1965; Hawley et al. 1995), which models either a small unstrat-
ified block of gas within the disk (neglecting gravity) or a slice
of the disk with a vertically stratified density field (including
the vertical gravity component). The initial configuration of
the magnetic field is an important factor for the behavior and
saturation of the MRI, and most studies apply either a con-
stant mean magnetic field through the box (often referred to
as the net flux case NF; Hawley et al. 1995; Sano et al. 2004;
Guan et al. 2009; Simon et al. 2009) or an initial magnetic field
which has a zero mean-field value (often referred to as the zero
net flux case ZNF; Hawley et al. 1996; Fromang & Papaloizou
2007; Simon & Hawley 2009; Bodo et al. 2011). Both cases are
idealized setups. In reality, the mean-field within local patches
of the disk (with sizes around the scale height of disk) varies in

Article published by EDP Sciences
A91, page 1 of 21

99



A&A 659, A91 (2022)

time due to larger-scale current structures and nonideal magneto-
hydrodynamic (MHD) effects. In general, the initial mean-field
within local setups is either along an azimuthal or vertical direc-
tion, as any radial mean-field leads to a constant increase in the
azimuthal mean-field due to the shear.

The turbulence generated by the MRI is subcritical, which
means that it requires a self-sustaining process to remain active
(Rincon et al. 2007; Herault et al. 2011; Riols et al. 2013). A
physical explanation for the turbulence saturation in the ver-
tical net-flux case was proposed by Goodman & Xu (1994),
Pessah & Goodman (2009), and Latter et al. (2009), in which
saturation is driven by parasitic (secondary) instabilities that
break down the so-called channel modes (axisymmetric radial
streaming motions) generated by the primary (fastest-growing)
MRI modes. These correspond to both Kelvin-Helmholtz insta-
bilities which feed off the shear in the velocity field and tear-
ing mode instabilities which feed off the current density. The
secondary instabilities themselves eventually decay into small-
scale turbulence which then, in combination with the vertical
net-flux, regenerate the MRI modes, creating a self-sustaining
loop. The mechanism for saturation becomes more difficult to
pinpoint when there is no global mean-field in the box (ZNF),
since both the magnetic field and turbulence are required to sus-
tain each other. In addition, the unstratified ZNF case is statis-
tically symmetric, which means that there are no net helicities
within the flow, and this makes the generation of local mean-
fields more difficult. However, dynamo cycles and coherent local
mean-field growth have been observed in previous simulations
of the unstratified ZNF case (Shi et al. 2016). The underlying
process of growth still remains uncertain, but the two primary
theories are the stochastic alpha effect (Vishniac & Brandenburg
1997; Silant’ev 2000; Heinemann et al. 2011) and the mag-
netic shear current effect (Rogachevskii & Kleeorin 2003, 2004;
Squire & Bhattacharjee 2015a), which we examine in more
detail in the upcoming sections.

Adding stratification to the shearing box represents a more
realistic view of the accretions disk and brings forth new mecha-
nisms that act on the behavior and saturation of the system. The
stratified case enables buoyancy instabilities, which transports
magnetic fields from the outer central region upward. Beyond
|z| > 2H, the gas is magnetically dominated, less turbulent
and buoyantly unstable (e.g., Shi et al. 2010; Guan & Gammie
2011). Meanwhile, the sign of the field flips within the
mid-plane and this becomes a cyclical behavior that occurs
around every 10 orbits (producing the characteristic butter-
fly diagram). This behavior of the magnetic field indicates
an active mean-field dynamo (e.g., Brandenburg et al. 1995a;
Stone et al. 1996; Hirose et al. 2006; Gressel 2010; Davis et al.
2010; Simon et al. 2011). The stratified disk dynamo is com-
plicated, likely involving several mechanisms acting together;
as such the cyclic behavior observed within these simulations
still remains unclear. While the buoyancy instabilities domi-
nate the regions beyond the scale height, the central region
remain buoyantly stable, requiring an alternative mechanism in
this region (Shi et al. 2010; Gressel 2010). One such mecha-
nism is through the alpha-effect, or more explicitly the outward
transport of small scale magnetic helicity flux (Vishniac & Cho
2001; Subramanian & Brandenburg 2004). Another mechanism
that can advect magnetic fields is turbulent pumping which can
expel magnetic field from high turbulent regions to lower tur-
bulent regions (Gressel 2010). In addition, the dynamo mecha-
nisms in the unstratified case likely plays a role here too, as the
unstratified case represents an approximation of the mid-plane
in the disk (Lesur & Ogilvie 2008; Käpylä & Korpi 2011).

The stratified shearing box is also dependent on the strength
and geometry of the global magnetic mean-field, showing a
wide range of different behaviors. For example, compared to
an azimuthal mean-field, the presence of a vertical mean-field
greatly enhances the stress within the fluid and exhibits powerful
outflows which can increase the removal of angular momentum
from the disk (Suzuki & Inutsuka 2009; Guan & Gammie 2011;
Simon et al. 2011, 2013; Bai & Stone 2011).

Seminal work by Fromang et al. (2007) showed that for the
ZNF unstratified case the saturated turbulence level decreased
with higher resolution. This highlighted the importance of
small-scale dissipation for the MRI. Further work has shown
that more or less all MRI cases are sensitive to the small-
scale dissipation, where kinematic viscosity (ν) and mag-
netic resistivity (η) play a major role. The ratio between the
two, the so-called magnetic Prandtl number (Pm = ν/η),
is shown to be fundamentally important in determining the
MRI saturation and the stress, and in general the behavior of
MHD turbulence in any system (Schekochihin et al. 2004a,b;
Federrath et al. 2014; Federrath 2016). In nature, galaxies,
galaxy clusters and molecular clouds have magnetic Prandtl
numbers far greater than unity (Pm � 1). For example, in
molecular clouds Pm ≈ 1010 (Federrath 2016). On the oppo-
site extreme, protostellar disks and stars usually have mag-
netic Prandtl numbers much smaller than unity (Pm � 1)
(Brandenburg & Subramanian 2005; Schekochihin et al. 2007).
In MRI simulations, the Prandtl number can be either physi-
cal, where explicit dissipation is added to the system, or numer-
ical, which is determined by the numerical dissipation of the
numerical scheme. Higher Prandtl numbers generally increase
the angular momentum transport (Fromang & Papaloizou 2007;
Lesur & Longaretti 2007; Simon et al. 2009; Simon & Hawley
2009; Fromang et al. 2010). In the low Prandtl number limit,
while the NF case still exhibits MRI turbulence and satu-
rates at a low but finite value of angular momentum trans-
port (Meheut et al. 2015), in the ZNF case turbulence cannot
be sustained for Prandtl numbers below a certain critical value
(Pm < 2 in Fromang et al. 2007)1. In addition, the conver-
gence behavior of the MRI turbulence and the critical Prandtl
number can also be sensitive to the vertical aspect ratio of the
domain: while simulations with standard box (with vertical-
over-radial aspect ratio, Lz/Lx = 1) exhibit decreased stress
levels with increasing resolution, in the tall-box simulations
(Lz/Lx > 2.5) the stress levels are converged. The stress satura-
tion still depends on the Prandtl number in the tall boxes, albeit
with a somewhat lower critical value and with longer lifetimes
(Shi et al. 2016).

While a lot of the focus surrounding the Prandtl number has
revolved around the physical Prandtl number, not many stud-
ies have been done on the numerical Prandtl number. Numeri-
cal dissipation acts differently compared to physical dissipation,
depending heavily on the fluid flow and the resolution. How well
the numerical Prandtl number relates to the observed depen-
dency on the physical Prandtl number for MHD turbulence is
still unclear, but a similar dependency is expected. The conse-
quence of not knowing the numerical Prandtl number and its
resolution dependency in MRI simulations is clear, as a low-
order resistive scheme with a high-order viscosity scheme will
eventually result in a low Pm value and can lead to misinter-
pretation in convergence studies. The numerical Prandtl number

1 The critical Prandtl number is itself dependent on the Reynolds num-
ber, however no study have found a critical Prandtl number lower than
Pm,c = 2 for the standard box.
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has been investigated in several grid codes (Fromang et al. 2007
[with zeus] Lesaffre & Balbus 2007 [with zeus3d] Simon et al.
2009 [with athena] Federrath et al. 2011 [with flash]), which
have found a Prandtl number of around Pm ∼ 2 with a very weak
dependency on resolution. However, the true Pm value during
nonlinear MRI simulation remains uncertain as the numerical
dissipation is not readily available for grid codes and requires
comparison to analytical work or analysis of Fourier transfer
functions with certain assumptions and constraints. The esti-
mates of the numerical Prandtl number in these papers are taken
for subsonic flows and might significantly change for higher
Mach flows. In this paper, we take a closer look at the numer-
ical Prandtl number in SPH and see how it affects the turbulence
within MRI simulations.

The vast majority of MRI simulations have been carried
out with Eulerian grid-based codes. There have only been a
handful of studies investigating the MRI with meshless meth-
ods in 2D (Gaburov & Nitadori 2011; Pakmor & Springel 2013;
Hopkins & Raives 2016) and in 3D (Deng et al. 2019). The MRI
is an especially difficult test for meshless codes due to the
strong divergence-free constraint, which in Eulerian codes can
be enforced to machine precision with the constrained trans-
port method (Evans & Hawley 1988). However, improved diver-
gence cleaning methods in recent years have been developed
for meshless codes, which significantly reduce the divergence
errors (Tricco & Price 2012; Tricco et al. 2016). A benefit of
Lagrangian methods such as SPH is that they are always Galilean
invariant and do not suffer from advection errors, which can oth-
erwise be an issue for Eulerian codes in simulations with large
bulk flows. In addition, SPH is naturally adaptive in resolution,
making it ideal for simulations involving a wide range of spatial
scales. Understanding the numerical aspects of the MRI in SPH
is important, as SPH is widely used in astrophysical simulations
where the MRI can be present.

In Deng et al. (2019) the authors investigated the MRI in
3D with the meshless finite mass (MFM) and the SPH meth-
ods for a wide array of different initial magnetic field configu-
rations. For the unstratified NF case, it was shown that MFM
and SPH showed similar behavior to Eulerian grid-based codes.
However, for the unstratified ZNF case, both MFM and SPH
showed rapid decay of the turbulence. This is likely related to
the numerical dissipation schemes of the two methods, which
we investigate for SPH in this paper. For the stratified azimuthal
NF case, the MFM method could correctly produce the char-
acteristic dynamo cycles for around 50 to 70 orbits before the
turbulence eventually died out. SPH on the other hand could
not develop sustained turbulence and instead developed unphys-
ically strong azimuthal fields. This was attributed to a combi-
nation of discretization errors of the magnetic field in the radial
component and divergence cleaning amplifying the vertical field
component. In this paper, we further investigate this case with
the newly developed geometric density SPH (GDSPH), which
has been shown to improve the accuracy of SPH in problems
involving large density gradients. Specifically, it allows grid-
scale instabilities to grow that are suppressed in traditional SPH
(Wadsley et al. 2017; Wissing & Shen 2020).

In this paper, we have performed MRI simulations of the
unstratified NF case in the regular-sized box (Lz/Lx = 1)
and the unstratified ZNF case in both regular and taller sized
boxes (Lz/Lx = 4 as in Shi et al. 2016) with varying resolution
and numerical dissipation parameters. We have investigated the
numerical Prandtl number in SPH and its effect on the ampli-
fication and saturation of the MRI. We have also performed
simulations on the stratified NF case with both the traditional

SPH method (TSPH)2 and the GDSPH method to further inves-
tigate the unphysical growth in the azimuthal fields observed in
Deng et al. (2019). For these simulations, we also vary the res-
olution and strength of the numerical dissipation. In addition,
to all the simulations we also investigate the turbulent transport
coefficients.

This paper is organized as follows. In Sect. 2, we go through
the basics of dynamo theory, the simulation setup, and the post-
process analysis. In Sect. 3, we present our result for the unstrat-
ified NF and ZNF cases and in Sect. 4 we present our result for
the stratified case. In Sect. 5, we discuss our results and present
some concluding remarks.

2. Theory

2.1. Dynamo theory

A magnetic dynamo describes the exponential growth and sus-
tenance of magnetic fields due to being stretched, twisted, and
folded by the underlying fluid motions. While specific veloc-
ity field configurations can lead to dynamo action (laminar
dynamo), astrophysical fluids are usually highly turbulent, where
motion is chaotic across a large range of spatial scales. Dynamo
action can occur across all turbulent scales, but the magnetic
field is stretched faster by the smaller scale motions than the
larger-scale ones, leading to a faster growth on smaller scales
(known as the small-scale dynamo) (Kulsrud & Anderson 1992;
Kulsrud 1999). In ideal MHD, the growth rate is set primarily
by the viscous scale of the fluid. However, for MHD with dif-
fusion of the magnetic field (resistivity), this is no longer nec-
essarily true, as the magnetic fields on small-scales can now be
damped quickly. This makes the growth of the magnetic field
more intricate, as it is determined by the relationship between
the viscous scale lv and the resistive scale lη (Spitzer 1962). The

ratio between these two, the magnetic Prandtl number Pm =
lv
lη

is thus very important in the resulting characteristic and satu-
ration of the turbulent dynamo (Schekochihin et al. 2004a). For
Pm > 1 the quickest twisting and folding of the magnetic field is
driven at the viscous scale, where the underlying velocity field is
smooth as there are no smaller velocity structures in the flow at
this scale. The chaotic but smooth motion at this scale lends itself
to dynamo action, which means that magnetic fields can effi-
ciently be generated (Vaı̆nshteı̆n & Zel’dovich 1972; Zeldovich
1983; Zeldovich et al. 1990). The cut-off scale of magnetic fluc-
tuations will still be set by the resistive scale, which allows for
a buildup of power within the subviscous range. With higher
Pm values than one, more of the subviscous scale becomes
available for magnetic field amplification (Kulsrud & Anderson
1992; Schekochihin et al. 2004a).

The small-scale dynamo has been shown to be a possible
mechanism for amplifying the weak seed fields in the early uni-
verse to magnitudes observed in galaxies today (Boulares & Cox
1990; Beck et al. 1996; Kulsrud et al. 1997). However, magnetic
fields in the universe exhibit a high degree of coherence at
scales larger than the underlying turbulent motion (Beck et al.
2005; Beck 2015). Large-scale dynamo theory is an attempt to
explain how these coherent large-scale magnetic field structures
can be generated in highly turbulent environments. In essence, it

2 By traditional SPH we mean the MHD equations that are derived
directly from the Euler-Lagrange equations with the traditional SPH
density estimate ρa =

∑
b mbWab. See Price (2012) for more

information.
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investigates how the small-scale kinetic and magnetic fluctua-
tions couple to the underlying large-scale field.

To figure out the effect of the small-scale field on the large-
scale field, it is useful to introduce the formalism of mean-field
theory (Moffatt 1978; Parker 1979; Krause & Raedler 1980;
Ruzmaikin et al. 1988; Brandenburg & Subramanian 2005).
Assuming a scale separation between the large-scale and small-
scale, both the magnetic and velocity fields can be decomposed

to a mean field component (B and U) and a fluctuating compo-
nent (b and u):

B = B + b, U = U + u. (1)

Averaging the induction equation leads to the evolution equation
for the magnetic mean-field:

∂B
∂t
= ∇ × (U × B) + ∇ × E + η∇2B. (2)

Here U represents the large-scale velocity structure, η the mag-
netic diffusivity and E is the electromotive force (EMF) pro-
duced by the fluctuating fields:

E = u × b. (3)

By studying how the fluctuating u and b fields reacts to an
applied mean field, it can be shown that both u and b contain
a component independent of the mean-field and an additional
term which is linearly dependent on the applied mean-field:

b = b0 + bB, u = u0 + uB. (4)

Assuming the independent terms b0 and u0 are uncorrelated

(E0 = u0 × b0 = 0) and the assumption of scale separation, we

can expand E in a Taylor series in B and U:

Ei = αi jB j − ηi j J j + γi jΩ j + . . . (5)

Here α, η and γ are the tensorial transport coefficients and

J = ∇ × B is the mean-field current density and Ω = ∇ × U
is the mean-field vorticity. The first term of Eq. (5) is the α-
effect in which the small-scale turbulence generates an EMF
which is proportional to the mean-field itself. This effect, cou-
pled together with differential rotation, can develop the well-
known αω dynamo. The alpha-effect depends crucially on the
small-scale helcities within the turbulent flow, which require the
system to break statistical symmetry either by stratification or
through having a net helicity (Pouquet et al. 1976; Moffatt 1978;
Brandenburg & Subramanian 2005). The second term in Eq. (5)
generates an EMF in proportion to the mean-current and can
act to either amplify or diffuse the mean-field. The last term of
Eq. (5) is the Yoshizawa effect, which acts without the need for a
large-scale magnetic field and can be seen as a turbulent battery
mechanism (Yoshizawa & Yokoi 1993; Yokoi 2013). In addition
to a mean vorticial velocity component, the effect requires small-

scale cross-helicity between the turbulent fields (u · b)3.
In this paper, we are interested in the dynamo action that

arises within shearing boxes (see Sect. 2.2 for coordinate defini-
tions and simulation setup). We define our mean-field by taking
a horizontal average:

X =

∫
Xdxdy∫
dxdy

· (6)

3 A global magnetic field is probably required to create cross-helicity
in a turbulent field. Cross-helicity is shown to occur when the mean-
field is parallel to the direction of gravity in Rüdiger et al. (2011).

The turbulent field can then be calculated by removing the mean-
field component from the total field (see Eq. (1)). For the veloc-
ity, the mean-field is determined from the shearing box approx-
imation (U0 = −qΩxŷ). Here Ω is the angular velocity and q is
the shearing parameter, which for Keplerian disks is q = 3/2.
Since the horizontal average is only a function of z, Eq. (5) and

subsequently Eq. (2) simplifies greatly (Bz = 0, Jz = 0, and

Ωz = 0):

Ex = αxxBx + αxyBy − ηxx Jx − ηxy Jy, (7)

Ey = αyxBx + αyyBy − ηyx Jx − ηyy Jy, (8)

∂B
∂t x
= −∂z(αyxBx) − ∂z(αyyBy) + ∂z(ηyx Jx) + ∂z((ηyy + η)Jy), (9)

∂B
∂t y
= −qBx + ∂z(αxxBx) + ∂z(αxyBy) − ∂z((ηxx + η)Jx) − ∂z(ηxy Jy).

(10)

The γ terms from Eq. (5) become zero as our only component

of Ω is in the z direction. The diagonal components αxx and αyy
are the main driver of the alpha effect, generating a feedback
loop between the radial and azimuthal fields. The sign of diag-
onal components will depend on Ω · g (here g is the gravita-
tional acceleration) which will give us an odd symmetry around
the midplane of our stratified box simulations. Depending on the
gradient of the α parameter and structure of the magnetic field,
it will either work in accordance or in discordance with the field.
The antisymmetric components αxy and αyx can be related to

the diamagnetic pumping term γz =
1
2
(αyx − αxy) and describes

the transport of mean-fields due to the turbulence. In a similar
fashion, the diagonal components ηxx and ηyy describe the diffu-
sion of the mean-field due to the turbulence. Finally, we have the
off-diagonal components ηxy and ηyx that are responsible for the
dynamo produced by theΩ×J effect (Rädler 1969) and the shear
current effect (Rogachevskii & Kleeorin 2003). These equations
provide a powerful tool to connect our simulation data to the
mean-field theory. To calculate the transport coefficients we can
fit Eqs. (7) and (8) to output data from our simulations. One starts
by calculating

A1 =
[
BxEx, ByEx, JxEx, JyEx

]
, (11)

and

A2 =
[
BxEy, ByEy, JxEy, JyEy

]
, (12)

and the matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
BxBx BxBy BxJx BxJy

ByBx ByBy ByJx ByJy

JxBx JxBy JxJx JxJy

JyBx JyBy JyJx JyJy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13)

Then we solve the following matrix equations (using a least-
square method):

A1 = MC1 and A2 = MC2 (14)

for the transport coefficients:

C1 = (αxx, αxy,−ηxx,−ηxy) and C2 = (αyx, αyy,−ηyx,−ηyy). (15)

Because the mean-field is not solely evolved by E but also by
the shearing and dissipation of the field, significant errors can
arise in the transport coefficients from the correlation between
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different components. The main harmful error comes from cor-

relations with Bx (due to the shear term). We can improve the
signal and reduce the noise by minimizing the influence of

Bx with the following two approximations. First, we set the

diagonal transport coefficients to be equal (αxx = αyy ηxx =
ηyy), which have been shown to be an accurate approximation

(Hubbard et al. 2009; Gressel 2010). The second approximation
is to set αyx = 0, ηxy = 0 which is justified by the fact that

Bx � By (Squire & Bhattacharjee 2015b). However, we have

seen that including αyx, ηxy does not significantly change the

result for the other transport coefficients. For comparison with
previous studies, in the stratified case we allow a nonzero αyx

and ηxy, and allow αxx and αyy to be different.

What causes the dynamo growth within shearing box simu-
lations of the MRI remains uncertain and remains an active area

of research. The unstratified shearing box simulations develop
a so-called nonhelical shear dynamo which cannot be gener-

ated by the α-effect (in the traditional sense) as there is no net
kinetic/magnetic helicity or density stratification within the flow.

This implies that the mean of the α coefficients will tend toward
zero. However, the α coefficients for a finite-sized system will

fluctuate in time. If the fluctuations are sufficiently large, this
has shown to enable dynamo growth. This has been called the
incoherent-α dynamo, which could explain the dynamo mech-
anism in unstratified shearing boxes (Vishniac & Brandenburg
1997; Silant’ev 2000; Heinemann et al. 2011). However, a
potential issue with the incoherent-α dynamo is that the mean
fluctuations in α becomes smaller as the size of the box is
increased, which decreases the growth rate of the dynamo.
Another potential mechanism for the dynamo is the magnetic
shear-current effect, which depends crucially on the off-diagonal
turbulent resistivity coefficient ηyx (Rogachevskii & Kleeorin
2003; Squire & Bhattacharjee 2015a,b,c). The idea of the mag-
netic shear-current effect is that a bath of magnetic fluctua-
tions under the influence of an azimuthal field produces an
EMF that generates radial fields which subsequently act to
amplify the azimuthal field resulting in a dynamo instability.
The instability can be shown to happen if −ηyxΩz < 0 which
means that dynamo action is possible from the shear-current
effect if ηyx is negative. In this paper, we examine the shear-
current effect and determine if it agrees well with previous
results.

Furthermore, stratification adds several additional mecha-
nisms that can affect the dynamo process. The α-effect can pro-
vide dynamo action and has been proposed to be a main driver
of the dynamo together with the shear-current effect. Both of
these effects can cause a phase-shift between the growing fields,
explaining the cyclic nature of the radial and azimuthal fields
seen in stratified shearing boxes. In addition, buoyancy instabil-
ities expel the magnetic field outward.

2.2. Simulation setup

For all our simulations we use the MHD version of Gasoline2
with the same default set of code parameters as in Wissing & Shen
(2020). The simulations are set up using a shearing box approxi-
mation (Goldreich & Lynden-Bell 1965; Hawley et al. 1995), in
which a corotating patch of disk with angular velocity Ω at
a distance R is used as the computational domain. The patch
is assumed small such that curvature can be neglected and we
can employ a local cartesian coordinate system with x as the
radial direction, y as the azimuthal direction and z as the ver-
tical direction. The additional terms added to the equations of

motion are:(
dv
dt

)
shearbox

= 2qΩ2x x̂ − 2Ω × u −Ω2z ẑ, (16)

q = −d lnΩ

d ln r
·

Where the term 2qΩ2x x̂ represents the tidal acceleration, 2Ω×u
represents the Coriolis force and Ω2z ẑ represents the vertical
gravitational force from the central object. The equilibrium solu-
tion of Eq. (16) will be independent of time and follows a uni-
form shearing motion in the azimuthal direction

uy = qΩx ŷ. (17)

If any mean radial velocity exists, the simulation box will start to

oscillate with an epicyclic frequency of κ = 2Ω
√

1 − q/2. This
can be the case if set initially or if momentum is not tightly con-
served. SPH conserves both momentum and energy very tightly
and only suffers from nonconservation in the strong-field regime
(β < 2) in the presence of large divergence errors. The shear
parameter q is set to follow a Keplerian profile (q = 3/2)
and the angular velocity is set to Ω = 1.0. For our periodic
boundaries we do not employ explicit ghost or boundary par-
ticles, the particles across the boundary interact and exchange
forces as regular. Position and velocities are relative to the cen-
tral particle and neighbors across the boundaries receive a posi-
tion offset of one domain length (Lx, Ly, Lz). We do not allow
for a compact kernel radius that is larger than the smallest
domain length of the box, as this would lead to the particle
interacting with itself. This could in principle be allowed but
would require additional code and some extra overhead. The
boundary in the x-direction is shear periodic, which means that
particles passing/interacting across the boundary receives an
additional velocity offset of Δv = ±qΩLxŷ in which Lx is the
length of the domain in the x direction. This is simpler than
for grid codes, where shear periodic boundaries require careful
reconstruction to retain conservative fluxes across the boundary.
While retaining fluxes due to boundary conditions remain simple
in SPH, there are other potential flux errors. The main one comes
from the divergence error and, more precisely, the removal of the
monopole current v(∇·B) from the induction equation (Janhunen
2000; Dellar 2001; Price & Monaghan 2005). Removing this
term from the induction equation ensures that the surface flux is
conserved (which is crucial) and makes the magnetic field diver-
gence become a passive scalar which is simply carried away with
the flow. However, in doing this, it is no longer ensured that the
volume integral of the magnetic field is conserved (the global
mean-field). This issue is shared among the majority of numeri-
cal schemes and in this case the error will directly depend on the
magnetic field divergence. The error is generally very small but
can contaminate the solution, as MRI can be quite sensitive to
any global radial mean-field. To avoid this we employ a correc-
tion to the flux, which ensures that no global radial mean-fields
are generated. We do not employ this correction for simulations
with outflow boundaries.

For the unstratified simulations, the last term of Eq. (16) is
not included and the domain is periodic in both the y and z direc-
tions. For the stratified simulations, all terms are included and the
domain is periodic in y and has outflow boundaries in z. The out-
flow boundary in z is set to remove any element with a smoothing
length greater than h = 0.5 Lx to avoid the double-counting of
elements across the computational domain. The stratified simu-
lations acquire a density profile of ρ = e−zH with a scale height of
H = cs/Ω where cs is the speed of sound. We use an isothermal
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equation of state (P = ρc2
s ), with cs = 1.0 set for all simula-

tions. Before simulations are run, the initial particle distribution
is relaxed to a glass distribution, then random velocity perturba-
tions of around 5% of the sound speed are added to the shear
flow to quickly initiate the MRI.

To determine how well the MRI is resolved , we use the reso-
lution metric developed by Noble et al. (2010) which defines an
effective quality parameter (number of resolution elements per
MRI wavelength):

Q =
λMRI

h
=

2πvA,z

Ωh
, (18)

where λMRI is the characteristic wavelength and is roughly equal
to the fastest growing MRI mode, and vA,z is the vertical com-
ponent of the Alfvén velocity, and h is the resolution length.
We follow the example from Deng et al. (2019) where, instead
of setting the resolution length to the smoothing length, it is
based on the standard deviation of the smoothing kernel. For
the Wendland C4 kernel, it gives an effective resolution element
length heff = 0.9h. To properly resolve the linear MRI roughly
only Q > 6 is required, however, the stress is highly resolution-
dependent until a value of roughly Qz > 10 and Qy > 20 is
reached (for the stratified NF case Hawley et al. 2011).

As mentioned in the introduction, the magnetic Prandtl num-
ber plays a large role in the growth of turbulent dynamos. To
gauge the effective Prandtl number from a numerical scheme, the
numerical dissipation needs to be determined and translated into
an effective kinematic viscosity (ν) and physical resistivity (η).
In Eulerian schemes, dissipation comes partly from advection of
the fluid which introduces diffusion due to truncation errors in
the flux reconstruction. This error will be proportional to both
the resolution and the fluid velocity. For shear periodic bound-
ary conditions this means that there will be uneven dissipation
due to larger velocities near the edge than the center of domain.
Moreover, additional dissipation is added to maintain numeri-
cal stability, this is often done through Riemann solvers in grid
codes. Estimating the numerical diffusion in Eulerian schemes is
not straightforward and often requires comparison to analytical
solutions for an accurate estimate.

Compared to Eulerian grid codes, SPH does not suffer
from these advection errors and artificial dissipation terms4

are added to handle flow discontinuities (e.g., shocks). These
are primarily discretized from physical dissipation laws, but
with diffusion parameters that depend on the resolution and
potentially on flow properties. In Monaghan (1985) it was
shown that the linear coefficient (αAV) in the artificial vis-
cosity corresponds to a resolution-dependent physical viscos-
ity in the continuum limit, which has been confirmed by
several authors (Artymowicz & Lubow 1994; Lodato & Price
2010; Meru & Bate 2012). However, extrapolating to the con-
tinuum limit in this case underestimates the physical viscos-
ity/resistivity. It becomes more difficult to estimate the physical
dissipation when using particle-pair dependent signal velocities
(as is done for our artificial resistivity). In this paper, we opt for
another way to estimate the physical dissipation. By recording
the energy lost due to artificial dissipation terms, we can directly
estimate the parameters from the equivalent physical dissipation
equations. From the Navier-Stokes equation we can estimate the
shear viscosity with:

νAD =

(
du
dt

)
AV

1
2

(
∂vi

∂x j +
∂v j

∂xi

)2
+ (∇ · u)2

. (19)

4 The artificial dissipation terms can be seen as approximate Riemann
solvers as they functionally produce similar dissipation (Monaghan
1997).

Here, we have assumed the fixed ratio between the bulk viscosity
and the shear viscosity, which follows from the continuum limit
derivation (ζAV =

5
3
νAV) (Lodato & Price 2010). We estimate the

physical resistivity from the Ohmic dissipation law:

ηAD =
ρ

J2

(
du
dt

)
AR

. (20)

Taking the ratio of the two equations then gives us the numerical
Prandtl number:

Pm,AD =
νAD

ηAD

· (21)

For some of our simulations we force a certain average numer-

ical Prandtl number 〈Pm,AD〉 = 〈νAD〉
〈ηAD〉 . This is done by adjusting

either
(

du
dt

)
AV

and
(

dv
dt

)
AV

or
(

du
dt

)
AR

and
(

dB
dt

)
AR

by a constant fac-

tor such that 〈Pm,AD〉 corresponds to the desired value. This is the
same as changing the artificial dissipation coefficients (αB, αAV)
by a constant factor at each time step.

2.3. Post-process analysis

After the SPH simulations are done, the particle data is interpo-
lated to uniform grid data for post-analysis. To obtain statistical
properties of our simulations, we average our data in a few dif-
ferent ways. The first is the horizontal average given in Eq. (6).
The second is the volume average:

〈X〉 =
∫

XdV∫
dV

(22)

and the final one is the time average:

〈X〉t =
∫

Xdt∫
dt
· (23)

All the averages are in general applied over the whole spa-
tial/time domain of the simulation if not stated otherwise. To
quantify the angular momentum transport and the saturation of
the MRI, it is useful to calculate the stresses in the fluid. The total
stress together with its magnetic and hydrodynamic component
is given by:

αstress = −BxBy

P0

+
ρ(vx − v̄x)(vy − v̄y)

P0

, (24)

where P0 is the initial pressure(in our case P0 = 1) and ρ is
the density and here the first term in the equation represent the
Maxwell stress (αMW) and the second term the Reynolds stress
(αRey). A related quantity that we look at is the normalized mag-
netic stress:

αmag = −2
〈BxBy〉
〈B2〉 · (25)

In addition to looking at the effect of the total field, we also inves-

tigate the contributions from the mean-field (B) and turbulent
component (b) in the magnetic energy and the stress. We define
their respective normalized stress as in Shi et al. (2016):

αmag,mean = −2
〈BxBy〉
〈B2〉

, αmag,turb = −2
〈bxby〉
〈B2 − B2〉

· (26)
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Fig. 1. Time evolution of several volume-averaged quantities over 200 orbits. Magnetic energy (top left), kinetic energy (top right), normalized
Maxwell stress (bottom left) and the total stress (bottom right). The darkness of the curves is determined by the strength of the artificial resistivity
parameter, αB = 0.25, 0.5, 1.0, 2.0, 4.0. Due to the high oscillatory nature of the simulation we have smoothed the curves using a Savitzky–Golay
filter, the unsmoothed curves can still be seen as very transparent curves. The oscillations are related to the formation and destruction of channel
modes.

Another useful quantity is the Elsasser number, which describes
the relative strength of the magnetic dissipation term:

Λ =
v2

A

ηADΩ
· (27)

Here, vA is the Alfvén speed. For a Λ < 1 the linear proper-
ties of the MRI will change significantly and hinder saturation
(Blaes & Balbus 1994; Wardle 1999; Balbus & Terquem 2001).

Finally, it is important to track the divergence error in numer-
ical simulations to make sure it remains small and does not
severely effect the results:

εdivB =
h|∇ · B|
|B| · (28)

The mean of this quantity should preferably remain below 10−2

but higher values can still be acceptable (depending on the sys-
tem).

3. Unstratified simulation results

3.1. Net-flux simulations

We setup our simulation with a shearing box of size L =
(1.0, π, 1.0) with a resolution of [nx, ny, nz] = [48, 150, 48]. The
magnetic field is initialized with a constant vertical component

B =

√
2P0

β
ẑ. (29)

With a plasma beta of β = 400 and pressure equal to P0 = 1.0.
Using Eq. (18) we can see that we resolve λMRI with a verti-
cal quality parameter of Qz = [22, 30, 45]. We carry out several

simulations with various artificial resistivity coefficients αB =
[0.25, 0.5, 1.0, 2.0, 4.0], where αB = 0.5 is the code default. The
simulations are run for about 200 orbits or until the turbulence
dies out. The results of the simulations are shown in Figs. 1–5.

In Fig. 1 we can see that the turbulent dynamo in all the simu-
lations reach a saturated state with a heavily fluctuating magnetic
energy density, which is what we expect from the unstratified NF
case (Hawley et al. 1995)5. From Fig. 2, we can see that as we
decrease the resistivity, the magnetic energy and stress increases
rapidly, where the total stress goes from αstress = 0.25 to 0.9. For
the normalized magnetic stress (αmag), we can see that the aver-
age lies around 0.65 with only a weak dependency on the resis-
tivity. The normalized magnetic stress is, in general, higher than
what has been seen in previous Eulerian grid simulations, where
αmag ≈ 0.4 to 0.6. The magnetic energy and Maxwell stress

vary widely in the literature (αstress = 10−2 → 100) and our val-
ues are similar to the ones reported in Hawley et al. (1995) and
Simon et al. (2009). From Fig. 2, the ratio between the Maxwell
stress and Reynolds stress(αMW/αrey) shows a value of around
4.0 with an increasing trend for lower resistivity. This is also
similar to values reported in Hawley et al. (1995) but somewhat
lower than Simon et al. (2009) (αMW/αrey ≈ 7.6).

The higher αmag can likely be explained by the use of a
smaller box size L = (1.0, π, 1.0) compared to most other stud-
ies, which use L = (1.0, 2π, 1.0). A smaller aspect ratio in the
NF case does in general show stronger fluctuations in the turbu-
lent state (Bodo et al. 2008; Lesaffre et al. 2009). The stronger
fluctuations are a result of suppressing larger MRI modes that

5 We have also performed simulations with excessively strong dissi-
pation Λ < 1 and simulations with a very weak magnetic field (such
that MRI is unresolved) to ensure that the MRI does not grow in these
situations.
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Fig. 2. Time-averaged values of several quantities as a function of the artificial resistivity coefficient, for all our unstratified net-flux simula-
tions. From the top left to bottom right: magnetic energy density, Maxwell stress, normalized Maxwell stress, ratio between Reynolds and
Maxwell stresses, total stress, ratio between radial and total magnetic field energy. For some quantities we have plotted the total time aver-
age (shown in green), the time average of the turbulent component (shown in orange) and the time average of the mean-field component
(shown in blue).

would otherwise participate in the nonlinear dynamics, which
heavily effect the growth and decay of channel modes. In Fig. 3,
we can see an example of the formation and destruction of such
a channel mode; during this process the magnetic energy and
stress will peak. In addition to being dependent on the aspect
ratio of the box, the growth and destruction of these channel
modes will depend on the dissipation. This can clearly be seen
in Fig. 4 where we see the evolution of the horizontal averaged
azimuthal field and stress over a period of thirty orbits for two
different resistivities (αB = 0.5 and αB = 4). We can see that
during this time channel modes are subsequently formed and
destroyed, but with different frequency and behavior. In the high
resistivity case, the magnetic energy peaks during channel mode
formation but most of the small-scale magnetic fluctuations are
quickly suppressed after channel mode breakdown. This means
that less of the stress within this case comes from the turbulent
component. This can also be seen in Fig. 2, where the mean-field
component dominates over the turbulent component at αB = 4
while becoming almost equal at αB = 0.5. Interestingly, the nor-
malized mean-field and turbulent magnetic stresses stays fairly
constant αmag,mean ≈ 0.8 and αmag,turb ≈ 0.55.

The average divergence error remains either below or
close to εdiv,err ≈ 10−2. For the simulations with αB =
[0.25, 0.5, 1.0, 2.0, 4.0] the corresponding time-averaged Prandtl
numbers is 〈〈Pm〉〉t = [1.95, 1.42, 0.96, 0.60, 0.35]. The stan-
dard default value of αB = 0.5 has a Pm ≈ 1.5. The Elsasser

Fig. 3. Generation and break down of a channel mode during the
unstratified net-flux run with αB = 0.5. The figure depicts a surface ren-
dering of the radial velocity within the shearing box. The two-channel
flow is clearly seen in the left picture which over an orbit is quickly
broken down into turbulence, as seen in the right figure. The generation
of the channel mode coincides with a peak in the magnetic energy and
as the channel flow is destroyed the magnetic energy will decrease. The
formation and destruction of these channel flows occur continuously
throughout the simulation.

number remains far above 1 for all the cases and the aver-
age plasma beta rises linearly with αB with value between
β ≈ 5→ 20.
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Net-flux case αB = 0.5 Net-flux case αB =

Fig. 4. Spacetime diagrams showing the azimuthal magnetic field at the top and the total stress at the bottom. The left figures shows the simulation
with an artificial resistivity coefficient αB = 0.5 and the right figures show the simulation with αB = 4. The figures clearly show the peaks related
to the continuous creation and destruction of channel modes. Increasing the resistivity leads to a suppression of small scale magnetic fluctuation,
and this means that more of the stress will be generated by the mean-field component.

Fig. 5. Time-averaged turbulent transport coefficient from the unstrat-
ified net-flux cases. To minimize noise/bias we have set αxx = αyy,
ηxx = ηyy, αyx = 0.0 and ηxy = 0.0. We can see that only the turbulent
resistivity ηxx has a consistent value above 0.0, with a value of about
0.008.

Figure 5 shows the time-averaged values of the transport
coefficients αxx, αxy, ηxx and ηyx for all the simulations. From
the figure, we can see that both α coefficients have values very
close to zero which is to be expected from the unstratified case.
ηyx does also not have a significant value and remains close to
zero. The only value that has a significant value above zero is the
turbulent diffusivity which has a value of around ηxx ≈ 0.008.

3.2. Zero net-flux simulations

The setup follows from Deng et al. (2019), in which a shearing
box together with a varying vertical magnetic field is initialized

B = B0ẑ sin(2πx). (30)

Here, B0 is the initial magnetic field strength and is set such
that the volume averaged plasma beta is β = 2P/B2 =
400. We run the simulations at three different resolutions
[nx, ny, nz] = [48, 150, 48], [64, 200, 64], [96, 300, 96] with a
standard box with length L = (1.0, π, 1.0). To test the effect
of a taller box within SPH, we also run with a domain size
of L = (1.0, π, 4.0) (same as in Shi et al. 2016), with a reso-
lution of [nx, ny, nz] = [48, 150, 192]. Using Eq. (18), we can
see that we resolve λMRI with an initial quality parameter of

Qz = [22, 30, 45] in each respective resolution. We carry out
several simulations at each resolution by varying the artificial
resistivity coefficient αB = [0.25, 0.5, 1.0, 2.0, 4.0] (blue curves
in Figs. 6 and 7), where αB = 0.5 is the default value. The
corresponding time-averaged Prandtl numbers in the nx = 96
standard box is 〈〈Pm〉〉t = [2.54, 2.17, 1.35, 0.83, 0.54] and in the
nx = 48 tall box 〈〈Pm〉〉t = [1.84, 1.47, 1.11, 0.67, 0.34]. In addi-
tion, we run four cases where we force a certain average numer-
ical Prandtl number by adjusting either the artificial viscosity or
the artifical resistivity (see Sect. 2.2). One case is run by adjust-
ing the artificial resistivity, where we force the Prandtl number
to be equal to Pm,AR = 3 (the red curve in Figs. 6 and 7). Two of
the cases adjust the artificial viscosity with αB = 0.5, forcing a
Prandtl number of Pm,AV = 3 and Pm,AV = 6 and one case adjust
the artificial viscosity with αB = 0.25, forcing a Prandtl number
of Pm,AV = 0.25 (green curves in Figs. 6 and 7). The simulations
are run for about 200 orbits or until the turbulence dies out. The
results of the simulations are shown in Figs. 6–13.

In Fig. 6 we show the time evolution of the magnetic energy,
kinetic energy, normalized Maxwell stress, and the total stress
for our high-resolution standard box cases with nx = 96. Only
four of the nine cases reach a saturated state (αB = 0.25,
Pm,AR = 3, Pm,AV = 3, Pm,AV = 6), which all have a Prandtl num-
ber of Pm > 2.5. The αB = 0.5 case sustain turbulence for about
50 orbits before decaying, and most of the other cases have their
turbulence eliminated within the first 30 orbits, similar to what
was seen in Deng et al. (2019), where the longest living case was
about 20 orbits. An outlier is the evolution of Pm,AV = 0.25,
where small stress oscillation can still be seen for a long time
after the initial decay. This is simply caused by numerical noise,
as we force a very low AV for this case together with a low AR
coefficient αB = 0.25. In Fig. 7, we show the time evolution of
the same quantities for the tall-box simulations with resolution
nx = 48. We find that the same four cases reach a saturated state
for the tall box (αB = 0.25, Pm,AR = 3, Pm,AV = 3, Pm,AV = 6).
The αB = 0.5 case sustain turbulence for a longer time, decay-
ing after around 120 orbits. Most of the other cases have their
turbulence eliminated within the first 20 orbits.

In Figs. 8 and 9 we show the time-averaged quantities of
the high-resolution (nx = 96), standard box runs and the lower
resolution (nx = 48), tall box cases, respectively. For the tall
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Fig. 6. Time evolution of several volume-averaged quantities for the standard box, unstratified ZNF cases at as resolution of nx = 96: magnetic
energy (top left), kinetic energy (top right), normalized Maxwell stress (bottom left) and the total stress (bottom right). The red line show the case
of Pm,AR = 3.0 where we set the Prandtl number by altering the AR strength. The green lines show the case where we set the Prandtl number
by altering the AV strength, the darkness of the curve is determined by the value of the set Prandtl number, Pm,AV = [0.25, 3.0, 6.0]. The blue
curves represent the cases with a set AR coefficient without forcing the Prandtl number, where the darkness is determined by the strength of the
artificial resistivity parameter, αB = [0.25, 0.5, 1.0, 2.0, 4.0]. Four of the nine cases reach a saturated state (αB = 0.25, Pm,AR = 3.0, Pm,AV = 3.0,
Pm,AV = 6.0) The code default value of αB = 0.5 sustains turbulence for around 50 orbits before decaying.

Fig. 7. Time evolution of several volume-averaged quantities for the tall box, unstratified ZNF cases at a resolution of nx = 48: magnetic energy
(top left), kinetic energy (top right), normalized Maxwell stress (bottom left) and the total stress (bottom right). The red line show the case of
Pm,AR = 3.0 where we set the Prandtl number by altering the AR strength. The green lines show the case where we set the Prandtl number
by altering the AV strength, the darkness of the curve is determined by the value of the set Prandtl number, Pm,AV = [0.25, 3.0, 6.0]. The blue
curves represent the cases with a set AR coefficient without forcing the Prandtl number, where the darkness is determined by the strength of the
artificial resistivity parameter, αB = [0.25, 0.5, 1.0, 2.0, 4.0]. Four of the nine cases reach a saturated state (αB = 0.25, Pm,AR = 3.0, Pm,AV = 3.0,
Pm,AV = 6.0).The code default value of αB = 0.5 sustains turbulence for a long time but starts to decay after around 120 orbits.
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Fig. 8. Time-averaged values of several quantities for all our unstratified, zero net-flux simulations with standard box size (L = [1.0, π, 4.0])
and resolution nx = 96. From the top left to bottom right: magnetic energy density, Maxwell stress, normalized Maxwell stress, ratio between
Reynolds and Maxwell stresses, total stress, ratio between radial and total magnetic field energy. The x-axis shows the time-averaged effective
Prandtl number of the simulation. For some quantities we have plotted the total time average (shown in green), the time average of the turbulent
component (shown in orange) and the time average of the mean component (shown in blue). The circles represent the simulations where we
have adjusted the strength of the artificial resistivity, while the star symbols represent the simulations where we have adjusted the artificial
viscosity.

Fig. 9. Time-averaged values of several quantities for all our unstratified, zero net-flux simulations with tall box size (L = [1.0, π, 4.0]) and
resolution nx = 48. From the top left to bottom right: magnetic energy density, Maxwell stress, normalized Maxwell stress, ratio between
Reynolds and Maxwell stresses, total stress, ratio between radial and total magnetic field energy. The x-axis shows the time-averaged effec-
tive Prandtl number of the simulation. For some quantities we have plotted the total time average (shown in green), the time average of the
turbulent component (shown in orange) and the time average of the mean component (shown in blue). The circles represent the simulations where
we have adjusted the strength of the artificial resistivity, while the star symbols represent the simulations where we have adjusted the artificial
viscosity.
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Standard ZNF (Pm,AV = 3) Tall ZNF (Pm,AV = 3)

Fig. 10. Spacetime diagrams showing the horizontal-averaged azimuthal magnetic field for the unstratified, zero net flux case (Pm,AV = 3). We can
see that the tall box has larger structured mean-fields than the standard box. Compared to Shi et al. (2016) the rendered pattern of the mean-fields
are similar, however, they produce much stronger mean-fields in their tall box simulations.

Fig. 11. Time-averaged values of several quantities for our resolution study of the unstratified, zero net-flux cases with Pm,AR = 3.0 and Pm,AV = 6.0,
which includes tall box and standard box simulations. From the top left to bottom right: magnetic energy density, Maxwell stress, normalized
Maxwell stress, ratio between Reynolds and Maxwell stresses, total stress, ratio between radial and total magnetic field energy. For some quantities
we have plotted the total time average (shown in green), the time average of the turbulent component (shown in orange) and the time average of
the mean component (shown in blue). The circles represent the simulations where we have adjusted the strength of the artificial resistivity, small
circles represent standard box cases and large circles represent tall box. While the star (standard box size) and large stars (tall box size) represent
the simulations where we have adjusted the artificial viscosity.

box case, we only show the time averages of the saturated
runs as all the other runs are killed after their initial turbulence
die out. For the standard box, we can see that as we increase
the Prandtl number the magnetic energy and stress increases
rapidly until we reach a high enough Pm for saturation. The
saturated cases reaches a total stress of around αstress = 0.01
and a normalized magnetic stress of αmag = 0.4, which is con-
sistent with previous studies of the MRI (Hawley et al. 1995;
Simon et al. 2009). From these figures, we can see that the
total magnetic field energy and stresses are largely dominated
by the turbulent component, with only a very weak mean-field

component. The mean-field energy and stress do not change
significantly as the Prandtl number is increased. We can also
see that there is not a one to one correlation between energies
and stresses for Pm,AR and Pm,AV simulations with the same
Prandtl number. The resulting stress levels are higher when low-
ering the artificial resistivity compared to increasing the arti-
ficial viscosity. While saturation is mainly governed by the
Prandtl number, stress levels will depend on both the Prandtl
number and the strength of the resistivity (Simon & Hawley
2009). In addition, as shown in Fromang et al. (2007) the critical
Prandtl number does have a dependence on the Reynolds number
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Fig. 12. Resolution dependence of the numerical Prandtl number for the
unstratified, zero-flux cases on the left (Sect. 3.2) and for the stratified,
net-flux cases to the right (Sect. 4). This shows cases with an AR coef-
ficient set to αB = 0.5, which is our code default. We can see that we
have an almost linear increase with higher resolution for both cases.

which also can have an effect on the amplitude of the saturated
stress.

Comparing this to the time average results from the tall box
shown in Fig. 9, we can see that similar to the standard box, mag-
netic energy and stress increases with Pm, reaching albeit higher
values but with similar normalized magnetic stress values. From
the magnetic energy density, it is clear that the turbulent part of
the energy is dominant similar to the standard box case. This
is quite different from the results presented in Shi et al. (2016)
where the mean-field contributes most to the energy density.

In fact, they showed a rapid increase in mean-field energy
density as the vertical aspect ratio of the domain was increased.
We do see that the mean-field energy density of our tall box is
larger than the standard box, however, it remains relatively weak.
A visual comparison of the mean-fields can be seen in Fig. 10,
where we see that the tall box has larger structured mean-fields
than the standard box. The rendered pattern of the mean-fields
are reminiscent of the result presented in Shi et al. (2016). The
lack of significant mean-fields can be seen in the resulting stress
levels of our simulations, which are only slightly larger than the
ones from the standard box case and nowhere near the αstress =
10−1 presented in Shi et al. (2016).

We can see from Figs. 8 and 9 that, in general, there is a small
increase in the ratio between Maxwell stress and Reynolds stress
as Prandtl number is increased and seem to converge towards
a value of roughly αMW/αrey ≈ 4.5 for the standard box and
αMW/αrey ≈ 5 in the tall box. For the standard box, this is
slightly higher than the typical values from Eulerian grid sim-
ulations, which report values of around αMW/αrey ≈ 3 ↔ 4
(Hawley et al. 1995, 1999; Abramowicz et al. 1996; Stone et al.
1996; Sano et al. 2004). However the tall box values are in accor-
dance with those presented in Shi et al. (2016).

The average divergence error remains either below or close
to εdiv,err ≈ 10−2. As expected, the divergence error is kept lower
by increasing the artificial viscosity to reach a certain Prandtl
number than by decreasing the resistivity. For the majority of
cases, the Elsasser number remains far above 1, however, for
the high resistivity cases (αB = 4, αB = 2) the number drops
below one, which is likely why we see such a rapid decay of tur-
bulence in these cases. We also show the relative radial energy
ratio (B2

x/B2), which shows a steep increase with Pm and for our
saturated runs it reaches values around B2

x/B2 ≈ 0.1. This is sim-
ilar to the values reported by Hawley et al. (1996) but is some-
what lower than the higher resolution simulation performed by
Simon et al. (2009) and Shi et al. (2016), which reports values
of around B2

x/B2 ≈ 0.14. Looking at Fig. 11, this is consistent

with the increasing trend with resolution that we see. Increasing
the vertical domain size slightly increases the value from about
B2

x/B2 ≈ 0.09 for the standard box to around B2
x/B2 ≈ 0.11

for the tall box. This is opposite to what is found in Shi et al.
(2016), which see a consistent decrease in this value as the ver-
tical domain size is increased, going from B2

x/B2 ≈ 0.14 for the
standard box to B2

x/B2 ≈ 0.12 for the 4 times vertical ratio and
B2

x/B2 ≈ 0.09 for the 8 times vertical ratio.
We also performed a resolution study on the standard box case

to see how different time-averaged quantities change with resolu-
tion. We primarily look at the two cases where we set Pm,AV = 6
and Pm,AR = 3. From Fig. 11, we can see that for the saturated
cases there is no strong resolution dependence on the total stress
as reported by studies using Eulerian grid codes (Fromang et al.
2006). Instead, the stress saturates at around αstress = 0.01. This
resolution independence is of course only for the cases where
we force a certain numerical Prandtl number, as increasing the
resolution for a fixed resistivity coefficient will alter the numeri-
cal Prandtl number. The resolution dependency of the numerical
Prandtl number can be seen in Fig. 12, which shows that Pm has
an almost linear increase with resolution. The normalized turbu-
lent stress ratio remains fairly constant at around αmag ≈ 0.42
with a slight increase with resolution. The relative radial energy
ratio (B2

x/B2) show a steady increase with resolution and have not
converged for our highest resolution case. The divergence error is
also reduced with increasing resolution, which is consistent with
our cleaning scheme implementation.

Figure 13 shows the time-averaged values of the transport
coefficients αxx, αxy, ηxx and ηyx for all the unstratified simu-
lations. From the figures, we can see that both α coefficients
have values very close to zero which is to be expected from
the unstratified case. ηyx can be seen to have a slightly posi-
tive value for all cases exhibiting sustained turbulence, which
is more significant in the tall box. The turbulent diffusivity can
be seen to have a consistent positive value, which is around
ηxx ≈ 0.006 for the standard box and ηxx ≈ 0.015 in the tall
box. The nonnegative value in ηyx might explain why we do
not see the generation of large mean-fields within our simula-
tions as Shi et al. (2016) shows a consistent negative value for
ηyx which as we explained in the introduction can act to gener-
ate local mean-fields through the shear-current effect. However,
the lack of shear-current effect is consistent with other previ-
ous studies of the MRI (Brandenburg et al. 1995a; Brandenburg
2008; Gressel 2010).

4. Stratified simulation results

The stratified NF simulations represent a more realistic and com-
plex situation than the unstratified case, as it includes the vertical
tidal component (final term in Eq. (16)), which results in the fol-
lowing density stratification:

ρ = ρ0e−
z2

H2 · (31)

Here, H is the scale height and is set by H = cs/Ω = 1.0. As we
adopt an isothermal equation of state we do not have to worry
about the scale height changing during the simulation. In pre-
vious studies, the developed MRI turbulence shows a periodic
dynamo cycle, where large-scale magnetic fields emanate from
the central region and migrate outwards to the disk corona, grow-
ing in strength as they do so. This flips the sign of the field within
the central region and the process is repeated. As we mentioned
in the introduction, recently it has been shown that SPH develops
unphysically strong azimuthal fields in simulations of the strati-
fied shearing box (Deng et al. 2019). In this section, we further
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Fig. 13. Time-averaged turbulent transport coefficients from the unstratified, zero net-flux cases, with the standard box size cases (L = [1.0, π, 1.0],
nx = 96) to the left and the tall box cases (L = [1.0, π, 4.0], nx = 48) to the right. The circles represent the simulations where we have adjusted the
strength of the artificial resistivity, while the star symbols represent the simulations where we have adjusted the artificial viscosity. To minimize
noise we have set αxx = αyy, ηxx = ηyy, αyx = 0.0 and ηxy = 0.0. We can see that the α coefficients have values of around zero as expected for the
unstratified case and ηxx with a consistent positive value. For the standard box ηyx remain close to zero while for the tall box we see a consistent
positive value which is contrary to what was seen by Shi et al. (2016).

investigate this case with a larger array of different numerical
dissipation parameters and resolutions. In addition, we compare
the results from TSPH to the newly developed GDSPH, which
has been shown to improve performance in cases involving large
density gradients (Wissing & Shen 2020). We set up the simula-
tion following Deng et al. (2019), in which they use a shearing

box of length L = (
√

2, 4
√

2, 24) together with an azimuthal
magnetic field:

B =

√
2P
β

ŷ. (32)

Here, the initial plasma beta is set to β = 25 throughout the box
and, as the pressure will vary with density as P = ρc2

s , we begin
with a magnetic field that varies in the vertical direction. We run
the simulations at four different resolutions [nx,N] = [46, 1.6 ×
106], [58, 3.1×106], [73, 6.2×106], [93, 12.8×106], where the two
lower resolution cases are the same as the ones run in Deng et al.
(2019). As the resolution is adaptive, we have more resolution
in the inner region of the disk (which is where the MRI turbu-
lence is sustained) and less resolution outside in the disk corona.
Using Eq. (18) we can see that we resolve λMRI with an average
initial quality parameter of Qmid = [43, 55, 68, 90] in the mid-
plane for each respective resolution. We carry out several sim-
ulation at a resolution of nx = 58, where we vary the artificial
resistivity coefficient αB = [0.3, 0.5, 1.0, 2.0], where αB = 0.5
is the code default value. For all the simulation cases we run
one with TSPH and one with GDSPH for comparison. Due to
the outflow boundaries, there is mass loss from the simulation,
which leads to a flattening of the density profile. This means that
resolution will gradually be reduced as time goes on, which is
why we at most run our simulation for about 100 orbits. The
high-resolution cases are also very computationally costly and
are stopped at a somewhat earlier time. The results of the simu-
lations are shown in Figs. 14–21.

In Fig. 14 we can see the time evolution of the magnetic
energy, kinetic energy, normalized Maxwell stress, and the total
stress for a resolution with nx = 58. From this figure, we can see
that all of the TSPH simulations exhibit an unphysical growth
in the magnetic energy density, similar to what was seen in
Deng et al. (2019). These simulations are stopped when they
reach roughly an average plasma beta value of β = 1, which acts
as a confirmation of erroneous growth. On the other hand, all the

GDSPH simulations remain stable and those runs with moder-
ate artificial resistivities all reach saturated magnetic energy and
stress levels that are similar to what has been seen in the litera-
ture (Shi et al. 2010; Simon et al. 2011). To get a closer look at
what is going on, we have in Fig. 15 plotted the time-space evo-
lution of the horizontal averaged radial and azimuthal fields for
both GDSPH and TSPH in the case of αB = 0.3 with a resolution
nx = 58. Both GDSPH and TSPH develop the characteristic but-
terfly diagram, where the azimuthal fields are buoyantly trans-
ported outward and periodically flip signs in the central region.
However, while the GDSPH case stably continues this behavior
for over 100 orbits, the TSPH case quickly becomes unstable and
exhibits a runaway growth. Increasing the resistivity to αB = 1.0
does not help stabilize the TSPH scheme, as can be seen in
Fig. 16. The butterfly diagram is gone and instead, a strong pos-
itive azimuthal field permeates the disk corona (|z| > 2). The
azimuthal field is additionally amplified as the simulation goes
on and starts to propagate into the central disk region. The fail-
ure of buoyantly ejecting the positive fields in the disk corona is
due to the magnetic field growing strong enough to stabilize the
region (magnetic tension suppresses the bending of field lines).
The time-space diagram of the TSPH case in Fig. 16 is reminis-
cent of the result presented in Deng et al. (2019) where a similar
magnetic field growth was observed. The GDSPH case, on the
other hand, still exhibits the butterfly diagram at higher resistiv-
ity, but with a longer periodic cycle for the flipping of the mag-
netic field (especially at early times). The TSPH case still has a
very active and fluctuating radial field within the central region,
and this is also reflected in the normalized Maxwell stresses in
Fig. 14, where the values of the TSPH cases remain similar to
the GDSPH runs with the same αB. This is further highlighted in
Fig. 17, where we can see a rendering of the magnetic field and
density within the box for both the TSPH and GDSPH cases.
Both simulations exhibit a very similar central region, while the
TSPH have significantly stronger azimuthal fields in the out-
skirts. As TSPH and GDSPH mainly differ at density gradients,
it makes sense that the issue of the unphysical growth seems to
lie in the outer region of the disk (beyond |z| > 1) where we have
lower resolution and a significant density gradient.

Figure 18 shows time averages of different quantities. In
general, as we decrease the resistivity, the magnetic energy and
stress increases for both the TSPH and GDSPH runs. The total
stress reaches a time-averaged value of around αstress ≈ 10−2
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Fig. 14. Time evolution of several volume-averaged quantities for the stratified net-flux simulations with varying artificial resistivity (αB =
[0.3, 0.5, 1.0, 2.0]) at a resolution of nx = 58. Magnetic energy (top left), kinetic energy (top right), normalized Maxwell stress (bottom left)
and the total stress (bottom right). The red lines show the simulations run with TSPH and blue lines show the runs with GDSPH where the dark-
ness of the line represents the strength of the artificial resistivity. We have smoothed the curves using a Savitzky–Golay filter, the unsmoothed
curves can still be seen as very transparent curves.

GDSPH αB = 0.3 TSPH αB = 0.3

Fig. 15. Spacetime diagrams of the stratified net flux simulations, showing the evolution of the horizontal averaged radial (top) and azimuthal
(bottom) fields for both GDSPH (left) and TSPH (right) in the case of αB = 0.3 with a resolution nx = 58. Both GDSPH and TSPH develop the
characteristic butterfly diagram. However, the TSPH simulation quickly becomes unstable and exhibits a runaway growth in the magnetic field.

and a normalized Maxwell stress of around αmag = 0.3 for the
low resistivity cases, similar to previous result from the literature
(Shi et al. 2010; Simon et al. 2011). Looking at the mean and
turbulent components of the magnetic energy density, we can
see that the mean-field component is the dominant part, but with
an increasing fraction from the turbulent field as we decrease
the resistivity. The TSPH runs develop a much higher magnetic
energy density than the GDSPH cases, with a highly dominat-
ing mean-field component, which comes mainly from the strong
azimuthal fields in the corona. For the Maxwell stress, in our

GDSPH simulations the turbulent and mean-field components
contribute a similar amount to the total Maxwell stress. The nor-
malized Maxwell stresses have similar values for both GDSPH
and TSPH, with the turbulent component of around 0.45 and
largely independent of the resistivity, but the mean-field com-
ponent increases with decreasing resistivity.

From Fig. 18 we can also see that the ratio between the
Maxwell stress and Reynolds stress show a value of around 5.0
for the GDSPH cases with an increasing trend for lower resistiv-
ity. For the TSPH runs, this ratio shoots up for the low resistivity
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GDSPH αB = 1.0 TSPH αB = 1.0

Fig. 16. Spacetime diagrams of the stratified net flux simulations, showing the evolution of the horizontal averaged radial (top) and azimuthal
(bottom) fields for both GDSPH (left) and TSPH (right) in the case of αB = 1 with a resolution nx = 58. At this resistivity only GDSPH reproduce
the butterfly diagram, where for TSPH a strong positive azimuthal field permeates the disk corona (|z| > 2). The azimuthal field is additionally
amplified as the simulation goes on and starts to propagate into the central disk region.

GDSPH TSPH

Fig. 17. Stratified shearing box simulation with net-flux, shows the sur-
face rendering of the azimuthal field (top) and the density (bottom). Left:
case for GDSPH and right: case with TSPH. In the TSPH case we can
see that there is excessive growth in the magnetic field in the outer part
of the disk.

cases to a value of around 8. The numerical Prandtl number has
a steady increase as we decrease the resistivity. For GDSPH it
goes from a value of around 0.7 for αB = 2.0 to a value of 1.6
for αB = 0.25. In TSPH the numerical Prandtl number is larger
but not by much. The average divergence error for both GDSPH
and TSPH remains close or below a value of εdiv,err ≈ 10−2.

To investigate the effect of resolution in the stratified simu-
lations, we perform a resolution study with the following radial
resolutions nx = [48, 58, 73, 93]. In these simulations, we use

the code default artificial resistivity coefficient of αB = 0.5. The
high-resolution cases (nx = 73, 93) are very costly, so we have

only run them for about 60 orbits. In Fig. 19 we can see the
time evolution of the magnetic energy, kinetic energy, normal-

ized Maxwell stress, and the total stress for TSPH and GDSPH
at different resolutions. From this figure, we can see that all the

TSPH cases eventually become unstable, and the lowest resolu-
tion cases “survives” the longest. All of the GDSPH cases show

a stable behavior, with only the lowest resolution case having
a period of low stress before increasing to similar levels as the

higher resolution cases. A significant early difference that can
be seen between TSPH and GDSPH is shown in the magnetic

energy density, where all the TSPH have a much larger initial
“bump” than the GDSPH curves which flatten out after the initial

increase. This larger initial bump correlates to stronger magnetic
fields near the density contrast at around |z| ≈ 1.

In Fig. 20 we can see that the values of magnetic energy den-
sity and stress remain fairly flat, with a slight initial increase with
resolution but then a slight decrease for our highest resolution. It
is not clear to why we see a decrease in the stress for the high-
est resolution. It could simply be a stochastic phenomena that
would flatten out if we ran it for longer. However, both GDSPH
and TSPH follow a similar curve, pointing towards a real effect.
We can see that the turbulent component does become a more
dominant part in both the energy density and in the stress as
we increase resolution. The normalized Maxwell stress has a
slight increase with resolution, going from around αmag = 0.2
to αmag = 0.3 and the total stress for GDSPH lies between

αstress = 10−3 ↔ 10−2 which is in accordance to the values pre-
sented by Stone et al. (1996) and Shi et al. (2010). We can see
that the ratio between the Maxwell stress and Reynolds stress is
almost independent of resolution giving a value of 5.0 for the
GDSPH cases and around 7.0 for TSPH. Similar to the unstrat-
ified case, we can in Fig. 12 see that we have a slow but linear
increase in the numerical Prandtl number with resolution, going
from around Pm = 1.3 to Pm = 1.5 for the GDSPH cases. The
average divergence error slightly decreases with resolution for
both TSPH and GDSPH with values around εdiv,err ≈ 10−2.

In Fig. 21 we show the horizontal time-averaged turbu-
lent coefficients as a function of z. As we mentioned in the
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Fig. 18. Time-averaged values of several quantities for all our stratified net-flux simulations as a function of the artificial resistivity (αB) at a
resolution of nx = 58. From the top left to bottom right: magnetic energy density, Maxwell stress, normalized Maxwell stress, ratio between
Reynolds and Maxwell stresses, total stress, estimated numerical Prandtl number. For some quantities we have plotted the total time average
(shown in green), the time average of the turbulent component (shown in orange) and the time average of the mean component (shown in blue).
The circles represent the simulations run with GDSPH while the diamonds represent the simulations run with TSPH.

Fig. 19. Time evolution of several volume averaged quantities for the stratified net-flux simulations with varying resolution (nx = [48, 58, 74, 93])
and the artificial resistivity coefficient set to αB = 0.5. Magnetic energy (top left), kinetic energy (top right), normalized Maxwell stress (bottom
left) and the total stress (bottom right). The green lines show the simulations run with TSPH and purple lines show the runs with GDSPH. The
darkness of the line indicate the resolution, where the darkest line represents the highest resolution.
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Fig. 20. Time-averaged values of several quantities for all our stratified net-flux simulations with artificial resistivity coefficient set to αB = 0.5,
plotted over the resolution (particles along the x-axis). From the top left to bottom right: magnetic energy density, Maxwell stress, normalized
Maxwell stress, ratio between Reynolds and Maxwell stresses, total stress, ratio between azimuthal and total magnetic field energy. For some
quantities we have plotted the total time average (shown in green), the time average of the turbulent component (shown in orange) and the
time average of the mean component (shown in blue). The circles represent the simulations run with GDSPH while the diamonds represent the
simulations run with TSPH.

introduction, the dynamo action within stratified disks includes
several mechanisms that can act in different sections of the disk.
We find that the αxx, αyy, αxy and αyx all have a continuous gra-
dient, with anti-symmetric behavior around the mid-plane. The
behavior of αyy determines the effectiveness of the αω-dynamo,
as it operates on the radial mean fields (see Eq. (9)). We can
see that αyy has a negative gradient with negative values above
the midplane, this is consistent with Brandenburg et al. (1995b),
Brandenburg & Sokoloff (2002), Brandenburg (2008), Shi et al.
(2016), and is indicative of an effective alpha effect for turbulent
shear flows. The αxx has a positive gradient and will act against
the shear term, however, the shear term is the dominant part of
the induction equation for the toroidal mean field. The off diag-
onal terms of α is often interpreted as a turbulent/diamagnetic
pumping term γz =

1
2
(αyx − αxy). For our case, γz is positive

above the mid-plane and negative below, meaning that we have
a net transport of mean-fields away from the mid-plane. The αxy
and αyx coefficients have the opposite sign, which is similar to
the results from Shi et al. (2016), but different from other works
by Brandenburg (2008), Gressel (2010), where the two have the
same sign. However, αxy and αyx usually have similar magnitude
in earlier works which is not observed in our cases. The ηxx coef-
ficient and ηyx are generally positive, which is similar to what
was found by Brandenburg (2008), Gressel (2010) but contrary
to Shi et al. (2016).

5. Discussion

In this paper, we performed 23 simulations of the unstratified
shearing-box MRI and 14 simulations of the stratified shearing-
box MRI using SPH. For the unstratified NF case, we repro-
duced the results from previous studies in the literature, albeit

with slightly larger αmag values and in general larger mean-field
stresses. We attribute this primarily to the use of a smaller box,
which increases the amplitude and frequency of channel modes
and causes large bursts of magnetic energy and stress levels.

We demonstrate that the saturation of the unstratified ZNF
simulations is highly dependent on the numerical Prandtl num-
ber. Our simulations with a Prandtl number above 2.5 achieve
saturation for at least 200 orbits. To further illustrate that the
MRI saturation depends on the numerical Prandtl number, rather
than simply on the resistivity, we ran a simulation with a forced
Prandtl number of Pm,AV = 0.25 but with a low artificial resis-
tivity coefficient αB = 0.25. This simulation does not satu-
rate even though having a very low numerical resistivity. This
confirms that the dependencies on the Prandtl numbers found
in Fromang & Papaloizou (2007) still holds true for numerical
Prandtl numbers within SPH. The saturation levels in energies
and stresses are also mainly dependent on the Prandtl number.
However, for saturated simulations with the same Prandtl num-
ber, the magnetic energy and stress are slightly higher in cases
with varying artificial resistivity than the ones with varying arti-
ficial viscosity. This is also shown in Figs. 6 and 7: when com-
paring the Pm,AR = 3 case with Pm,AV = 3 run, the latter exhibit
larger oscillations and lower saturation levels.

We do not observe a decrease in stress with increasing
resolution as found in previous studies with Eulerian codes.
Although the stresses are highly dependent on numerical Prandtl
number, they have a weak dependency on the resolution at a
fixed Prandtl number, either increasing or staying roughly at the
same stress level with increasing resolution. A possible expla-
nation is that the numerical Prandtl number in Eulerian codes
is not independent of resolution. This is contrary to studies by
Fromang et al. (2007) and Simon et al. (2009), where the authors
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Fig. 21. Horizontal time-averaged turbulent transport coefficient in the z direction from the stratified net-flux cases. The darkness of the curves
is determined by the strength of the artificial resistivity parameter, αB = 0.3, 0.5, 1.0, 2.0. We can see that we have a negative αyy effect that is
negative (positive) in the top (bottom) half of the box. This enables the αω-dynamo to operate efficiently within the central region. αxx on the other
hand has a positive gradient and will act against the shear term. Turbulent pumping advects magnetic fields outwards from the central region with

velocity γz =
1
2
(αyx −αxy). However, the αxy magnitudes differ significantly to what is expected, which is likely caused by correlations with Bx due

to the shear term as explained in Sect. 2.1. In the central region we find that at all resistivities we have a positive value for ηxx and ηyx, which is
similar to our result of the unstratified case. In general we find that the behavior of the transport coefficients are similar to previous simulations of
the stratified MRI (Brandenburg et al. 1995b; Brandenburg & Sokoloff 2002; Brandenburg 2008; Shi et al. 2016; Gressel 2010).

found the numerical Prandtl number to be almost independent
of resolution (Pm ≈ 1.6). These studies utilized Fourier trans-
fer functions to compute the energy transfer between different
scales. They found that an active MRI can exist in their simu-
lations even though the numerical Prandtl number is lower than
the critical value determined in studies with physical dissipation
(Pm ∼ 2). Thus, it was concluded that numerical dissipation acts
differently to physical dissipation. In this paper, we however find
that active turbulence still requires similar critical Prandtl num-
bers found in studies using physical dissipation. It is likely that
the numerical dissipation in SPH is more closely related to phys-
ical dissipation than in grid codes, as SPH does not suffer from
advection errors. This difference seems to be the reason to why
grid codes see a significant reduction in stress with resolution.

Ideally, one would like the numerical Prandtl number to
remain independent of resolution, as this would ensure the cor-
rect dynamo behavior if one can resolve the turbulent medium.
The Prandtl numbers in our simulations increase with resolution
for a fixed artificial resistivity coefficient (αB = 0.5) ranging
from 〈Pm〉 ∼ 1.5 for nx = 48 to 〈Pm〉 ∼ 2.1 at nx = 96. Although
not independent, an increase of Pm with resolution ensures that
it increases along with the other fluid parameters (e.g., Reynolds
number and magnetic Reynolds number). This means that we
have convergent results when modeling most astrophysical flu-
ids. A worse result would have been if the Prandtl number
decreased with resolution which could result in a lowering of

stress with resolution and finally in the decay of the MRI. In
addition, as mentioned in the introduction, the Prandtl number
plays a major role in several dynamo mechanisms and is crucial
for the saturation of the small-scale dynamo, which for example
can be important for correctly simulating the growth and satu-
ration of magnetic fields within galaxies. Our results highlight
the importance of studying the numerical Prandtl number for all
numerical schemes beyond MRI, for instance in turbulent boxes
at different Mach numbers.

The main difference in our tall boxes compared to Shi et al.
(2016) is the lack of significant mean-fields, which leads to stress
levels that are only slightly larger than the ones in the stan-
dard box cases, but much smaller than αstress = 10−1 seen in
Shi et al. (2016). Our simulations do develop similar large-scale
patches in the toroidal field, but they are significantly weaker.
The small-scale turbulent components are consistent with the
Shi et al. (2016) results. The lack of mean-fields is likely due
to the difference seen in ηyx, which was consistently negative
for Shi et al. (2016) but for all our simulations are either zero or
positive. This would effectively lead to less coherent mean-field
growth within the box. However, the positive value of ηyx is con-
sistent with previous studies with the quasi-kinematic approach
(Brandenburg et al. 1995a; Brandenburg 2008; Gressel 2010).
For future work, it is worth exploring higher resolutions and dif-
ferent aspect ratios for SPH, to see if higher mean-field growth
can be observed.
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We demonstrated, for the first time, that the new GDSPH
can successfully sustain the turbulence in the stratified shear-
ing boxes for at least 100 orbits without decaying, similar to
the simulations using the Gizmo code with the meshless finite-
mass (MFM) method (Deng et al. 2019). However, the TSPH
runs remain unstable for all cases, which confirms the result from
Deng et al. (2019). Isolating each MHD term and looking at the
effect of the GDSPH weighing on each of them reveals that the
unstable growth is governed by the TSPH induction and clean-
ing equation. The major effect comes from the TSPH induction
equation, which always leads to larger growth rates at the out-
skirts of a disk (|z| > H) following the end of the linear phase.
This leads to larger regions of the simulation being magnetically
dominated, and consequently results in larger mass outflows
and momentum oscillations within the box. The TSPH clean-
ing equations increases the oscillations of the magnetic energy
in the outskirt, leading to quicker instability if paired together
with the TSPH induction equation. The unphysical growth rate
is possibly due to a magnetic flux error, as the energy is con-
tinuously increasing together with the magnetic field getting
either more and more positive or negative. Global mean-field
such as this can either be generated by the outflow boundaries or
the monopole currents. Since outflow boundaries tend to expel
flux roughly equally, the error is more likely to be caused by
monopole currents, together with the gradient errors of TSPH
near the density gradient. These fields eventually become so
strong that they can no longer be buoyantly transported out-
ward, because the critical wavelength is larger than the radial
size of box. The negative radial fields in the outskirts will con-
tinue to increase the azimuthal field and subsequently the total
magnetic energy. To be clear, this is not an intrinsic noncon-
servation of energy in the method (as seen in Lewis et al. 2015
due to an integrator bug), for either GDSPH or TSPH, both
show excellent momentum and energy conservation for a wide
range of tests shown in Wissing & Shen (2020). Kinetic energy
will naturally transfer to magnetic energy due to the shear of
net radial fields. In Deng et al. (2019) this unphysical increase
of the azimuthal field was partly attributed to the divergence
cleaning. While the divergence cleaning can increase the energy
oscillations in the outskirt, the cleaning scheme is in itself guar-
anteed to decrease the overall magnetic energy and can not
generate global mean-fields within the box. Because the hyper-
bolic divergence cleaning is conservative, which means that the
spreading of the magnetic flux due to the cleaning is always
symmetrical.

In addition, in our simulations the MRI turbulence is sus-
tained longer than the MFM simulation presented in Deng et al.
(2019), in which the turbulence decays around 40 orbits in their
fiducial run. Our code has the ability to sustain long-term MRI
turbulence similar to the Eulerian codes in previous MRI stud-
ies (Shi et al. 2010; Davis et al. 2010). However, as the simula-
tions were terminated earlier in Deng et al. (2019), it is unclear
if the MRI has actually fully died down in that work. We do also
observe that the MRI can temporarily dip down to similar values
before eventually being reenergized.

We also performed an analysis of the turbulent coefficients
for all the simulations presented in this paper. We showed that
no α-effect was present for the unstratified case as expected.
For the stratified case, we have a negative αyy effect that is
negative (positive) in the top (bottom) half of the box, which
indicates an effective αω-dynamo. This is similar to what was
found in Brandenburg (2008) and Shi et al. (2016). We find a
turbulent pumping that transports the mean-fields away from the
central region. However, we note that there is a significant uncer-

tainty in the calculated αyx coefficients due to correlations with
the shear term, as explained in Sect. 2.1. The turbulent resis-
tivity ηxx and ηyx are found to be positive in all of our simu-
lations, and are consistent with previous quasi-kinematic stud-
ies employing the test-field method (Brandenburg et al. 1995b;
Brandenburg & Sokoloff 2002; Brandenburg 2008).

Using the constrained hyperbolic divergence cleaning
scheme with variable cleaning speed from Tricco et al. (2016),
we can keep the divergence error low in all cases. The mean nor-
malized divergence error, 〈εdivB〉 = 〈h|∇ · B|/|B|〉, is typically of
order 10−2.

In conclusion, we find that
– SPH can effectively develop the MRI and reproduce many

of the values and dependencies seen in previous studies with
grid-based codes.

– The geometric density SPH (GDSPH) successfully devel-
ops the characteristic “butterfly” diagram of the stratified
MRI, showing saturated turbulence for at least 100 orbits.
The results are similar to MRI simulations with the MFM
method, and the turbulence is sustained longer.

– The numerical dissipation in SPH is found to act in a simi-
lar fashion to physical dissipation. We find a critical Prandtl
number of around Pm ≈ 2.5, which is similar to what grid
codes find with physical dissipation.

– The saturated stress for a certain numerical Prandtl number is
found to be nearly independent of resolution, which is con-
trary to grid codes where stress is reduced with increased
resolution. The results highlight the importance in determin-
ing the general behavior of the numerical Prandtl number in
different turbulent flows, to ensure a more accurate saturation
of the magnetic field.

– A major difference can also be seen in the tall, unstrati-
tified, zero net-flux case, where the mean-fíelds are much
weaker than a previous study. From the mean-field analysis,
we speculate that this might be due to a lack of shear-current
effect our simulations. Nevertheless, we find that our trans-
port coefficients are consistent with many previous studies
that also do not find an effective shear-current effect.
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