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Counting problems

tsurukamezan

鶴鶴鶴亀亀亀算算算 Counting cranes and turtles:

Some cranes and turtles dwell around a pond.
There are 18 legs and 7 heads in total.
How many cranes and how many turtles are there?

Children are taught how to find a solution.

Question: can there be multiple solutions?

Counting pairs of socks:

It’s your turn to fold the laundry.
There is a total of 18 socks.
How many pairs of socks are there?

Claim: the Question gets the same answer for these two problems.

Why? How are the two problems related?

Drawing of crane and turtle from en.ac-illust.com
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Counting problems

tsurukamozan

鶴鶴鶴鴨鴨鴨算算算 Counting cranes and ducks :

Some cranes and ducks dwell around a pond.
There are 18 legs and 9 heads in total.
How many cranes and how many ducks are there?

Children are taught how to find a solution.

Question: can there be multiple solutions?

Counting pairs of socks:

It’s your turn to fold the laundry.
There is a total of 18 socks.
How many pairs of socks are there?

Claim: the Question gets the same answer for these two problems.

Why? How are the two problems related?

Drawing of crane and turtle from en.ac-illust.com

Drawing of duck from www.emilydrawing.com
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Systems of linear equations
Abelian groups

Children count on their fingers F = {1, 2, 3, . . . }.

Let’s use F = Z integers, or another abelian group (a set with +,−)

like Z/Z(12) clock numbers where [12] = [0].

1
2

3

4
567

8

9

10
11 12

(Q,F )

socks︷︸︸︷
s , p︸︷︷︸
pairs

∈ F :
{
2 · p = s Q =

(
2
)
coefficient.

(P,F )

legs and heads︷ ︸︸ ︷
ℓ, h, c, t︸ ︷︷ ︸
cranes and turtles

∈ F :

{
2 · c + 4 · t = ℓ

1 · c + 1 · t = h
P =

(
2 4
1 1

)
coefficients.

Question:
does the linear system (P,F ) have multiple solutions?
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Systems of linear equations
Abelian groups

Children count on their fingers F = {1, 2, 3, . . . }.
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P =

(
2 4
1 1

)
coefficients.

Question: for given ℓ, h in F ,
does the linear system (P,F ) have multiple solutions?
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Systems of linear equations
Abelian groups

Children count on their fingers F = {1, 2, 3, . . . }.
Let’s use F = Z integers, or another abelian group (a set with +,−)

like Z/Z(12) clock numbers where [12] = [0].
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)
coefficient.

(P,F )
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cranes and turtles

∈ F :

{
2 · c + 4 · t = ℓ

1 · c + 1 · t = h
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(
2 4
1 1

)
coefficients.

Question: for given ℓ, h in F , for ℓ = h = 0,
does the linear system (P,F ) have multiple solutions?
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Systems of linear equations (continued)
Abelian groups

F : an abelian group.

1
2

3

4
567

8

9

10
11 12

(Q,F ) p ∈ F :
{
2 · p = 0 Q =

(
2
)
.

(P,F ) c, t ∈ F :

{
2 · c + 4 · t = 0

1 · c + 1 · t = 0
P =

(
2 4
1 1

)
.

Question: do the systems (P,F ) or (Q,F ) have multiple solutions?

Claim: it depends only on (MP ,F ) or (MQ ,F ), respectively.

Answer: since (Q,F ) has a unique solution, so does (P,F ).
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Systems of linear equations (continued)
Abelian groups

F : an abelian group.

1

2

(Q,F ) p ∈ F :
{
2 · p = 0 Q =

(
2
)
.

Q ⇝ MQ = Z/ZQ “clock numbers” [m] where [2] = [0]︸ ︷︷ ︸
parity check

.
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)
.
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Systems of linear equations (continued)
Abelian groups

F : an abelian group.

1

2

(Q,F ) p ∈ F :
{
2 · p = 0 Q =

(
2
)
.

Q ⇝ MQ = Z/ZQ “clock numbers” [m] where [2] = [0]︸ ︷︷ ︸
parity check

.

(P,F ) c, t ∈ F :

{
2 · c + 4 · t = 0

1 · c + 1 · t = 0
P =

(
2 4
1 1

)
.

P ⇝ MP = Z2/Z2P pairs [m, n] where [2, 4] = [1, 1] = [0, 0].

Question: do the systems (P,F ) or (Q,F ) have multiple solutions?

Claim: it depends only on (MP ,F ) or (MQ ,F ), respectively.

Answer: since (Q,F ) has a unique solution, so does (P,F ).



math ease gauge

Systems of linear equations (continued)
Abelian groups

F : an abelian group.
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∼−→ MP︸ ︷︷ ︸

one-to-one correspondence
respecting +,−

, by associating [m] with [m, 0].

Question: do the systems (P,F ) or (Q,F ) have multiple solutions?

Claim: it depends only on (MP ,F ) or (MQ ,F ), respectively.

Answer: since (Q,F ) has a unique solution, so does (P,F ).
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Systems of linear equations (continued)
Abelian groups

F : an abelian group.
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Systems of linear equations (continued)
Abelian groups

F : an abelian group.
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Answer: since (Q,F ) has a unique solution, so does (P,F ).



A categorical remark

Henri Poincaré (1854–1912)

Mathematicians do not study objects, but rela-
tions between objects; it is thus indifferent to
them to replace these objects by others, as long
as the relations do not change.

H. Poincaré, La Science et l’Hypothèse, (1902).

Portrait by Eugène Pirou circa 1900, Musée d’Orsay, Paris. Permission requested.
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Systems of linear equations
Modules over a ring

Z is a ring : a set with +, −,

product︷︸︸︷· .

F , MP are Z-modules : sets with +,−, and product by ring elements.

Z-modules form an abelian category : a set with −→︸︷︷︸
morphisms

(used in MQ
∼−→ MP) .

R: a ring, F a

product in R may not be commutative︷ ︸︸ ︷
left R-module.

(P,F ) u1, . . . , uN ∈ F :

{∑N
j=1 Pij uj = 0
(i=1,...,N′)

P = (Pij) coefficients in R.

P ⇝ MP = RN/RN′
P, a left R-module.
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Z is a ring : a set with +, −,
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Systems of linear equations (continued)
Modules over a ring

R: a ring, F a left R-module.

(P,F ) u1, . . . , uN ∈ F :

{∑N
j=1 Pij uj = 0
(i=1,...,N′)

P = (Pij) coefficients in R.

P ⇝ MP = RN/RN′
P, a left R-module.

Fact:

morphisms of R-modules︷ ︸︸ ︷
HomR(MP ,F ) ≃

solutions of (P,F )︷ ︸︸ ︷
{u ∈ FN : P · u = 0} . Will reappear often.

Proof: MP = coker
(
RN′ ·P // RN

)
=⇒ HomR(MP ,F ) ≃ ker

(
FN P· // FN′ )

.

Corollary: MP ≃ MQ =⇒ P u = 0 and Q v = 0 have interchangeable solutions.
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Systems of linear equations (continued)
Modules over a ring

R: a ring, F a left R-module.

(P,F ) u1, . . . , uN ∈ F :
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Systems of linear equations (continued)
Modules over a ring

R: a ring, F a left R-module.

(P,F ) u1, . . . , uN ∈ F :

{∑N
j=1 Pij uj = 0
(i=1,...,N′)

P = (Pij) coefficients in R.
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(
RN′ ·P // RN

)
=⇒ HomR(MP ,F ) ≃ ker

(
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Systems of linear equations (continued)
Modules over a ring

R: a ring, F a left R-module.

(P,F ) u1, . . . , uN ∈ F :

{∑N
j=1 Pij uj = 0
(i=1,...,N′)

P = (Pij) coefficients in R.

P ⇝ MP = RN/RN′
P, a left R-module.

Fact:

morphisms of R-modules︷ ︸︸ ︷
HomR(MP ,F ) ≃

solutions of (P,F )︷ ︸︸ ︷
{u ∈ FN : P · u = 0} . Will reappear often.

Proof: MP = coker
(
RN′ ·P // RN

)
=⇒ HomR(MP ,F ) ≃ ker

(
FN P· // FN′ )

.

Corollary: MP ≃ MQ =⇒ P u = 0 and Q v = 0 have interchangeable solutions.
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D-modules

Let us consider linear differential equations, like:

Let u(

radial distance︷︸︸︷
x ) be the intensity of colored

light in a supernumerary rainbow.

Airy’s equation gives: ( d
dx )

2 u = x u.

Write: x · u = x u, ∂ · u = d
dx u.

Leibniz’s rule d
dx (x u) = x du

dx + u implies ∂ · x = x · ∂ + 1

Let D be the ring of

non commutative︷ ︸︸ ︷
polynomials in x , ∂.

For P = ∂2 − x in D, Airy’s equation is written P u = 0

G.B. Airy, On the Intensity of Light in the neighbourhood of a Caustic, (1838).

Photo of rainbows from commons.wikimedia.org
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non commutative︷ ︸︸ ︷
polynomials in x , ∂.

For P = ∂2 − x in D, Airy’s equation is written P u = 0

G.B. Airy, On the Intensity of Light in the neighbourhood of a Caustic, (1838).

Photo of rainbows from commons.wikimedia.org
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An impressive Master’s thesis

Let D be the sheaf of rings of partial
differential operators.
The systems with coefficients

P = (Pij), Q = (Qλµ),

correspond to the modules

DN/DN′
P︸ ︷︷ ︸

MP

, DR/DR′
Q︸ ︷︷ ︸

MQ

.

If the modules are isomorphic, the sys-
tems’ solutions are interchanged using
differential operators.
What is essential is the D-module
MP , not its presentation

∑
Pijuj = 0.

Masaki Kashiwara, Algebraic study of systems of partial differential equations, Master’s thesis, (1970).
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D: sheaf of rings of partial differential operators

D: polynomials in x and ∂ = d
dx (complex coefficients).

O: polynomials in x , like a(x) = a0 + a1x + · · ·+ amx
m.

▶ Allow holomorphic functions: a(x)
locally at x = 0︷︸︸︷

= a0 + a1x + a2x
2 + a3x

3 + · · ·
▶ Allow more variables: a(x) = a(x1, . . . , xn).

▶ Allow changes of charts on X , manifold︸ ︷︷ ︸
curved space

.

OX : sheaf of holomorphic functions on X .

DX : sheaf of partial differential operators on X
i.e., locally, polynomials in a(x), ∂i =

∂
∂xi

(i = 1, . . . , n) .
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A microlocal perspective: Characteristic variety

X ∋ x , T ∗X ∋ (

position︷︸︸︷
x ;

momentum︷︸︸︷
ξ ) cotangent bundle (phase space).

DX ∋ P =
∑

α1+···+αn≤m
aα(x)∂

α1
1 · · · ∂αn

n

EX sheaf of microdifferential operators on T ∗X :

the localization of DX by {P : σ(P) ̸= 0} (e.g. ∂−1
i is defined on ξi ̸= 0).

M: left DX -module.

char(M) = supp(EXM) ⊂ T ∗X characteristic variety.

▶ MP = DX/DX P =⇒ char(MP) = σ(P)−1(0),

▶ char(OX ) = X ⊂︸ ︷︷ ︸
{ξ = 0}

T ∗X ⇐= OX ≃
loc

MQ = DX/Dn
X Q for Q =

de Rham system︷ ︸︸ ︷∂1
...
∂n

.
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A microlocal perspective: Involutivity

M coherent: DX -module with M ≃
loc

MP
∃P =

system of PDEs︷ ︸︸ ︷
(Pij).

Theorem: M coherent =⇒ char(M) ⊂ T ∗X is involutive.

In particular, dim char(M) ≥ dimX = 1
2 dimT ∗X .

From the introduction to the Lecture Notes.

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, (1973)



A microlocal perspective: Involutivity

M coherent: DX -module with M ≃
loc

MP
∃P =

system of PDEs︷ ︸︸ ︷
(Pij).

Theorem: M coherent =⇒ char(M) ⊂ T ∗X is involutive.

In particular, dim char(M) ≥ dimX = 1
2 dimT ∗X .

From the introduction to the Lecture Notes.

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, (1973)



A microlocal perspective: Involutivity

M coherent: DX -module with M ≃
loc

MP
∃P =

system of PDEs︷ ︸︸ ︷
(Pij).

Theorem: M coherent =⇒ char(M) ⊂ T ∗X is involutive.

In particular, dim char(M) ≥ dimX = 1
2 dimT ∗X .

From the introduction to the Lecture Notes.

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, (1973)



Riemann-Hilbert problem

a.k.a. Hilbert’s 21st problem

“. . . an important problem, which Riemann
probably already had in mind . . . ”

B. Riemann

(1826–1866)

D. Hilbert

(1862–1943)

Problem: to find a regular ordinary differential
equation whose holomorphic solutions have pre-
scribed monodromy around the singular points.

D. Hilbert, Mathematische Probleme, (1900).

Portraits from commons.wikimedia.org
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Holomorphic solutions of D-modules

X complex manifold, dimX = n.

M coherent: M ≃
loc

MP = DN
X /DN′

X P for some P = (Pij).

HomDX
(M,OX ) ≃

loc
{u ∈ ON

X : P · u = 0}: holomorphic solutions .

This is a module over CX︸ ︷︷ ︸
center of DX

, the sheaf of locally constant functions.

Recall: OX ≃
loc

MQ = DX/Dn
X Q for Q the de Rham system

∂1
...
∂n

.

Lemma: HomDX
(OX ,OX ) ≃ CX .

Recall: char(OX ) = X ⊂ T ∗X .

Theorem: M coherent, char(M) ⊂ X =⇒ M ≃
loc

Om
X for some m.

In particular, HomDX
(M,OX ) ≃

loc
Cm
X .
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Riemann-Hilbert problem

a.k.a. Hilbert’s 21st problem

“. . . an important problem, which Riemann
probably already had in mind . . . ”

B. Riemann

(1826–1866)

D. Hilbert

(1862–1943)

Problem: to find a regular ordinary differential
equation whose holomorphic solutions have pre-
scribed monodromy around the singular points.

D. Hilbert, Mathematische Probleme, (1900).

Portraits from commons.wikimedia.org



math ease gauge

Singularities of D-modules

M coherent ⇝ char(M) ⊂ T ∗X ∋ (x ; ξ).

Singularities of M = {x ∈ X : ∃ξ ̸= 0, (x ; ξ) ∈ char(M)}.

Recall:

M non singular︷ ︸︸ ︷
char(M) ⊂ X =⇒ HomDX

(M,OX ) ≃
loc

Cm
X for some m.

Local systems : CX -modules L ≃
loc

Cm
X for some m.

non singular︷ ︸︸ ︷
Riemann-Hilbert:

{
non singular DX -module

}
∼
//
{
local systems

}op
oo
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math ease gauge

Local systems encode monodromy

X = C \ {0},

Pλ = x∂ −
in C︷︸︸︷
λ , char(MP ) =

singularity {x = 0} excluded︷ ︸︸ ︷
{xξ = 0}

LPλ︸ ︷︷ ︸
local system

= HomD(MPλ
,OX ) ≃ {uλ ∈ OX : Pλ uλ = 0}.

LPλ
≃
loc

CX ⇐= uλ(x) = c

local determination︷︸︸︷
xλ by Cauchy-Kovalevskaya.

LPλ
has monodromy µ = e2πiλ:

c gets multiplied by µ
after a loop around {0}.

Example:


λ = 1

2

µ = −1

c = 1
0 1

i

θ

x

θ
2

x
1
2

−x
1
2

Engraving by M.C. Escher, © The M.C. Escher Company www.mcescher.com, used with permission.
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Engraving by M.C. Escher, © The M.C. Escher Company www.mcescher.com, used with permission.



Riemann-Hilbert problem

a.k.a. Hilbert’s 21st problem

“. . . an important problem, which Riemann
probably already had in mind . . . ”

B. Riemann

(1826–1866)

D. Hilbert

(1862–1943)

Problem: to find a regular ordinary differential
equation whose holomorphic solutions have pre-
scribed monodromy around the singular points.

D. Hilbert, Mathematische Probleme, (1900).

Portraits from commons.wikimedia.org
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Regularity of D-modules

Example: X = C, singularities at {0}.

Fuchsian︷ ︸︸ ︷
regular: P = x∂ + 1 P u = 0 ⇝ u(x) = c (1/x) polar singularities

irregular: Q = x2∂ + 1 Q v = 0 ⇝ v(x) = c exp(1/x) essential singularities

Fact: HomD(MP ,OX ) ≃ HomD(MQ ,OX ) as CX -modules.

Fact: MP ̸≃ MQ as DX -modules.
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A variation on MP ≃ MQ

M. Kashiwara and T. Kawai, On Holonomic Systems of Microdifferential Equations III, (1981)
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Perverse sheaves

X = C, Pλ = x∂ − λ, char(MPλ
) =

singularity {x = 0} included︷ ︸︸ ︷
{xξ = 0},

LPλ
= HomD(MPλ

,OX ) = ker
(
OX

Pλ· // OX

)
= {uλ ∈ OX : Pλ uλ = 0},

Fact: for λ ̸= −1 , MPλ
≃ MPλ+1

: uλ︸︷︷︸
locally: c xλ

7→ x · uλ, uλ+1︸ ︷︷ ︸
locally: c xλ+1

7→ 1
λ+1 ∂ · uλ+1.

Exceptions: P−1 = x∂ + 1 P0 = x∂

LP−1 = CX\{0} LP0 = CX

H1LP−1 = 0 H1LP0 = C{0}

LPλ
= RHomD(MPλ

,OX ) =
(
OX

Pλ· // OX

)
: a perverse sheaf .
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Holonomic D-modules

Theorem: M coherent =⇒ char(M) ⊂ T ∗X is involutive.

In particular, dim char(M) ≥ dimX = 1
2 dimT ∗X .

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, (1973)
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Theorem: M coherent =⇒ char(M) ⊂ T ∗X is involutive.

In particular, dim char(M) ≥ dimX = 1
2 dimT ∗X .

M holonomic︸ ︷︷ ︸
maximally overdetermined

: coherent & dim char(M)︸ ︷︷ ︸
Lagrangian

= dimX .

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, (1973)
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Riemann-Hilbert correspondence

non singular︷ ︸︸ ︷
Riemann-Hilbert: {non singular DX -modules} ∼

// {local systems}opoo

M � // HomD(M,OX )

HomC(L,OX ) L�oo

Ot
X : ind-sheaf of “tempered holomorphic functions”

Example: X = C, P−1 = x∂ + 1, MP−1 7→ CX\{0} :

RHomC(CX\{0},OX ) ∋ exp(1/x) essential singularities at {0} ,
RHomC(CX\{0},Ot

X ) ≃ MP−1 polar singularities at {0} .

irregular︷ ︸︸ ︷
Riemann-Hilbert: {holonomic DX -modules} ∼

// {enhanced perverse ind-sheaves}op.oo
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Stokes phenomenon

Let u be the intensity of colored
light in a supernumerary rainbow.
It solves Airy’s equation P u = 0, with
P = ∂2 − x irregular at x = ∞.

Niels Abel (1802–1829)

“Divergent series are, in general, something terrible and
it is a shame to base any proof on them. . . For the most
part, it is true that the results are correct, which is very
strange. I am working to find out why, a very interesting
problem.”

Letter from Abel to Holmboe (1826)

George Stokes (1819–1903)

“. . . the inferior term enters as it were into a
mist, is hidden for a little from view, and comes
out with its coefficient changed.”

Comments on his 1857 paper from a volume of Acta

Mathematica dedicated to Abel (1902)

G.B. Airy, On the Intensity of Light in the neighbourhood of a Caustic, (1838).
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